-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmeters.py
174 lines (138 loc) · 5.3 KB
/
meters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import collections
import json
import os
import time
import matplotlib.pyplot as plt
import torch
from utils import xmkdir
class TotalAverage:
def __init__(self):
self.reset()
def reset(self):
self.last_value = 0.0
self.mass = 0.0
self.sum = 0.0
def update(self, value, mass=1):
self.last_value = value
self.mass += mass
self.sum += value * mass
def get(self):
return self.sum / self.mass
class MovingAverage:
def __init__(self, inertia=0.9):
self.inertia = inertia
self.reset()
self.last_value = None
def reset(self):
self.last_value = None
self.average = None
def update(self, value, mass=1):
self.last_value = value
if self.average is None:
self.average = value
else:
self.average = self.inertia * self.average + (1 - self.inertia) * value
def get(self):
return self.average
class MetricsTrace:
def __init__(self):
self.reset()
def reset(self):
self.data = {}
def append(self, dataset, metric):
if dataset not in self.data:
self.data[dataset] = []
self.data[dataset].append(metric.get_data_dict())
def load(self, path):
"""Load the metrics trace from the specified JSON file."""
with open(path, "r") as f:
self.data = json.load(f)
def save(self, path):
"""Save the metrics trace to the specified JSON file."""
if path is None:
return
xmkdir(os.path.dirname(path))
with open(path, "w") as f:
json.dump(self.data, f, indent=2)
def plot(self, pdf_path=None):
"""Plots and optionally save as PDF the metrics trace."""
plot_metrics(self.data, pdf_path=pdf_path)
def get(self):
return self.data
def __str__(self):
pass
class Metrics:
def __init__(self):
self.iteration_time = MovingAverage(inertia=0.9)
self.now = time.time()
def update(self, prediction=None, ground_truth=None):
self.iteration_time.update(time.time() - self.now)
self.now = time.time()
def get_data_dict(self):
return {"objective": self.objective.get(), "iteration_time": self.iteration_time.get()}
class StandardMetrics(Metrics):
def __init__(self, m=None):
super(StandardMetrics, self).__init__()
self.metrics = m or {}
self.speed = MovingAverage(inertia=0.9)
def update(self, metric_dict, mass=1):
super(StandardMetrics, self).update()
for metric, val in metric_dict.items():
if torch.is_tensor(val):
val = val.item()
if metric not in self.metrics:
self.metrics[metric] = TotalAverage()
self.metrics[metric].update(val, mass)
self.speed.update(mass / self.iteration_time.last_value)
def get_data_dict(self):
data_dict = {k: v.get() for k, v in self.metrics.items()}
data_dict["speed"] = self.speed.get()
return data_dict
def __str__(self):
pstr = "%7.1fHz\t" % self.speed.get()
pstr += "\t".join(["%s: %6.5f" % (k, v.get()) for k, v in self.metrics.items()])
return pstr
def plot_metrics(stats, pdf_path=None, fig=1, datasets=None, metrics=None):
"""Plot metrics. `stats` should be a dictionary of type
stats[dataset][t][metric][i]
where dataset is the dataset name (e.g. `train` or `val`), t is an iteration number,
metric is the name of a metric (e.g. `loss` or `top1`), and i is a loss dimension.
Alternatively, if a loss has a single dimension, `stats[dataset][t][metric]` can
be a scalar.
The supported options are:
- pdf_file: path to a PDF file to store the figure (default: None)
- fig: MatPlotLib figure index (default: 1)
- datasets: list of dataset names to plot (default: None)
- metrics: list of metrics to plot (default: None)
"""
plt.figure(fig)
plt.clf()
linestyles = ["-", "--", "-.", ":"]
datasets = list(stats.keys()) if datasets is None else datasets
# Filter out empty datasets
datasets = [d for d in datasets if len(stats[d]) > 0]
duration = len(stats[datasets[0]])
metrics = list(stats[datasets[0]][0].keys()) if metrics is None else metrics
for m, metric in enumerate(metrics):
plt.subplot(len(metrics), 1, m + 1)
legend_content = []
for d, dataset in enumerate(datasets):
ls = linestyles[d % len(linestyles)]
if isinstance(stats[dataset][0][metric], collections.Iterable):
metric_dimension = len(stats[dataset][0][metric])
for sl in range(metric_dimension):
x = [stats[dataset][t][metric][sl] for t in range(duration)]
plt.plot(x, linestyle=ls)
name = f"{dataset} {metric}[{sl}]"
legend_content.append(name)
else:
x = [stats[dataset][t][metric] for t in range(duration)]
plt.plot(x, linestyle=ls)
name = f"{dataset} {metric}"
legend_content.append(name)
plt.legend(legend_content, loc=(1.04, 0))
plt.grid(True)
if pdf_path is not None:
plt.savefig(pdf_path, format="pdf", bbox_inches="tight")
plt.draw()
plt.pause(0.0001)