-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_fs.py
292 lines (234 loc) · 11.6 KB
/
test_fs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import random
import numpy as np
import torch
from util.config import cfg
import time
import util.eval as eval
from checkpoint import align_and_update_state_dicts, strip_prefix_if_present
from datasets.scannetv2 import BENCHMARK_SEMANTIC_LABELS
from model.geoformer.geoformer_fs import GeoFormerFS
from datasets.scannetv2_fs_inst import FSInstDataset
from lib.pointgroup_ops.functions import pointgroup_ops
from util.log import create_logger
from util.utils_3d import load_ids, matrix_non_max_suppression
def init():
os.makedirs(cfg.exp_path, exist_ok=True)
global logger
logger = create_logger(task="test")
logger.info(cfg)
random.seed(cfg.test_seed)
np.random.seed(cfg.test_seed)
torch.manual_seed(cfg.test_seed)
torch.cuda.manual_seed_all(cfg.test_seed)
def load_set_support(model, dataset):
set_support_name = cfg.type_support + str(cfg.cvfold) + "_" + str(cfg.k_shot) + "shot_10sets.pth"
set_support_file = os.path.join("exp", cfg.file_support, set_support_name)
# print(set_support_file)
# if os.path.exists(set_support_file):
# logger.info("Found set_support_vector.")
# set_support_vectors = torch.load(set_support_file)
# return set_support_vectors
# os.makedirs(os.path.join('exp', cfg.file_support), exist_ok=True)
logger.info(f"Generate support vectors and save to {set_support_file}")
dataset.genSupportLoader()
model.eval()
net_device = next(model.parameters()).device
set_support_vectors = []
with torch.no_grad():
for subset in range(cfg.run_num):
support_vector = {}
support_set = dataset.support_set[subset]
for cls in dataset.SEMANTIC_LABELS:
sup_vectors = []
list_scenes = support_set[cls]
for i in range(cfg.k_shot):
support_tuple = list_scenes[i]
support_scene_name, support_instance_id = support_tuple[0], support_tuple[1]
(
support_xyz_middle,
support_xyz_scaled,
support_rgb,
support_label,
support_instance_label,
) = dataset.load_single(support_scene_name, aug=False, permutate=False, val=True, support=True)
support_mask = (support_instance_label == support_instance_id).astype(int)
support_batch_offsets = torch.tensor([0, support_xyz_middle.shape[0]], dtype=torch.int)
support_masks_offset = torch.tensor(
[0, np.count_nonzero(support_mask)], dtype=torch.int
) # int (B+1)
support_locs = torch.cat(
[
torch.LongTensor(support_xyz_scaled.shape[0], 1).fill_(0),
torch.from_numpy(support_xyz_scaled).long(),
],
1,
)
support_locs_float = torch.from_numpy(support_xyz_middle).to(torch.float32)
support_feats = torch.from_numpy(support_rgb).to(torch.float32) # float (N, C)
support_masks = torch.from_numpy(support_mask)
support_spatial_shape = np.clip((support_locs.max(0)[0][1:] + 1).numpy(), cfg.full_scale[0], None)
# voxelize
support_voxel_locs, support_p2v_map, support_v2p_map = pointgroup_ops.voxelization_idx(
support_locs, 1, dataset.mode
)
support_dict = {
"voxel_locs": support_voxel_locs,
"p2v_map": support_p2v_map,
"v2p_map": support_v2p_map,
"locs": support_locs,
"locs_float": support_locs_float,
"feats": support_feats,
"support_masks": support_masks,
"spatial_shape": support_spatial_shape,
"batch_offsets": support_batch_offsets,
"mask_offsets": support_masks_offset,
}
for key in support_dict:
if torch.is_tensor(support_dict[key]):
support_dict[key] = support_dict[key].to(net_device)
sup_vec = model.process_support(support_dict, training=False)
sup_vectors.append(sup_vec)
sup_vectors = torch.cat(sup_vectors, dim=0)
mean_vector = torch.mean(sup_vectors, dim=0)
support_vector[cls] = mean_vector.cpu()
set_support_vectors.append(support_vector)
# torch.save(set_support_vectors, set_support_file)
logger.info("Finish create support vectors")
return set_support_vectors
def do_test(model, dataset):
model.eval()
net_device = next(model.parameters()).device
set_support_vectors = load_set_support(model, dataset)
logger.info(">>>>>>>>>>>>>>>> Start Inference >>>>>>>>>>>>>>>>")
dataloader = dataset.testLoader()
num_test_scenes = len(dataloader)
with torch.no_grad():
gt_file_arr = []
test_scene_name_arr = []
pred_info_arr = [[] for idx in range(cfg.run_num)]
start_time = time.time()
for i, batch_input in enumerate(dataloader):
nclusters = [0] * cfg.run_num
clusters = [[] for idx in range(cfg.run_num)]
cluster_scores = [[] for idx in range(cfg.run_num)]
cluster_semantic_id = [[] for idx in range(cfg.run_num)]
is_valid, list_support_dicts, query_dict, scene_infos = batch_input
if not is_valid:
continue
test_scene_name = scene_infos["query_scene"]
active_label = scene_infos["active_label"]
N = query_dict["feats"].shape[0]
for key in query_dict:
if torch.is_tensor(query_dict[key]):
query_dict[key] = query_dict[key].to(net_device)
for j, (label, support_dict) in enumerate(zip(active_label, list_support_dicts)):
for k in range(cfg.run_num): # NOTE number of runs
remember = False if (j == 0 and k == 0) else True
support_embeddings = None
if cfg.fix_support:
support_embeddings = set_support_vectors[k][label].unsqueeze(0).to(net_device)
else:
for key in support_dict:
if torch.is_tensor(support_dict[key]):
support_dict[key] = support_dict[key].to(net_device)
outputs = model(
support_dict,
query_dict,
training=False,
remember=remember,
support_embeddings=support_embeddings,
)
if outputs["proposal_scores"] is None:
continue
scores_pred, proposals_pred = outputs["proposal_scores"]
if isinstance(scores_pred, list):
continue
benchmark_label = BENCHMARK_SEMANTIC_LABELS[label]
cluster_semantic = torch.ones((proposals_pred.shape[0])).cuda() * benchmark_label
clusters[k].append(proposals_pred)
cluster_scores[k].append(scores_pred)
cluster_semantic_id[k].append(cluster_semantic)
# torch.cuda.empty_cache()
test_scene_name_arr.append(test_scene_name)
gt_file_name = os.path.join(cfg.data_root, cfg.dataset, "val_gt", test_scene_name + ".txt")
gt_file_arr.append(gt_file_name)
for k in range(cfg.run_num):
if len(clusters[k]) == 0:
pred_info_arr[k].append(None)
continue
clusters[k] = torch.cat(clusters[k], axis=0)
cluster_scores[k] = torch.cat(cluster_scores[k], axis=0)
cluster_semantic_id[k] = torch.cat(cluster_semantic_id[k], axis=0)
# nms
if cluster_scores[k].shape[0] == 0:
pick_idxs_cluster = np.empty(0)
else:
pick_idxs_cluster = matrix_non_max_suppression(
clusters[k].float(),
cluster_scores[k],
cluster_semantic_id[k],
final_score_thresh=0.5
)
clusters[k] = clusters[k][pick_idxs_cluster].cpu().numpy()
cluster_scores[k] = cluster_scores[k][pick_idxs_cluster].cpu().numpy()
cluster_semantic_id[k] = cluster_semantic_id[k][pick_idxs_cluster].cpu().numpy()
nclusters[k] = clusters[k].shape[0]
if cfg.eval:
pred_info = {}
pred_info["conf"] = cluster_scores[k]
pred_info["label_id"] = cluster_semantic_id[k]
pred_info["mask"] = clusters[k]
pred_info_arr[k].append(pred_info)
overlap_time = time.time() - start_time
logger.info(
f"Test scene {i+1}/{num_test_scenes}: {test_scene_name} | Elapsed time: {int(overlap_time)}s | Remaining time: {int(overlap_time * float(num_test_scenes-(i+1))/(i+1))}s"
)
logger.info(f"Num points: {N} | Num instances of {cfg.run_num} runs: {nclusters}")
# evaluation
if cfg.eval:
logger.info(">>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>")
run_dict = {}
for k in range(cfg.run_num):
matches = {}
for i in range(len(pred_info_arr[k])):
pred_info = pred_info_arr[k][i]
if pred_info is None:
continue
gt_file_name = gt_file_arr[i]
test_scene_name = test_scene_name_arr[i]
gt_ids = load_ids(gt_file_name)
gt2pred, pred2gt = eval.assign_instances_for_scan(test_scene_name, pred_info, gt_ids)
matches[test_scene_name] = {}
matches[test_scene_name]["gt"] = gt2pred
matches[test_scene_name]["pred"] = pred2gt
ap_scores = eval.evaluate_matches(matches)
avgs = eval.compute_averages(ap_scores)
eval.print_results(avgs, logger)
run_dict = eval.accumulate_averages_over_runs(run_dict, avgs)
run_dict = eval.compute_averages_over_runs(run_dict)
eval.print_results(run_dict, logger)
if __name__ == "__main__":
init()
# model
logger.info("=> creating model ...")
model = GeoFormerFS()
model = model.cuda()
logger.info("# parameters (model): {}".format(sum([x.nelement() for x in model.parameters()])))
checkpoint_fn = cfg.resume
if os.path.isfile(checkpoint_fn):
logger.info("=> loading checkpoint '{}'".format(checkpoint_fn))
state = torch.load(checkpoint_fn)
model_state_dict = model.state_dict()
loaded_state_dict = strip_prefix_if_present(state["state_dict"], prefix="module.")
align_and_update_state_dicts(model_state_dict, loaded_state_dict)
model.load_state_dict(model_state_dict)
logger.info("=> loaded checkpoint '{}')".format(checkpoint_fn))
else:
raise RuntimeError
dataset = FSInstDataset(split_set="val")
# evaluate
do_test(
model,
dataset,
)