-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
executable file
·93 lines (81 loc) · 3.52 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
from math import log10
import torch.nn.functional as F
from data import create_dataset
from models import create_model
from options.test_options import TestOptions
from skimage.metrics import structural_similarity as ssim
from tqdm import tqdm
from util import html
from util.visualizer import save_images
try:
import wandb
except ImportError:
print('Warning: wandb package cannot be found. The option "--use_wandb" will result in error.')
def metrics(img1, img2):
img1_np = img1.cpu().detach().numpy()
img2_np = img2.cpu().detach().numpy()
# Calculate PSNR using PyTorch
mse = F.mse_loss(img1, img2).item()
psnr = 10 * log10(1 / mse)
# Calculate SSIM using scikit-image
ssim_val = ssim(img1_np, img2_np, multichannel=True)
return psnr, ssim_val
if __name__ == "__main__":
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 0
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = (
True # disable data shuffling; comment this line if results on randomly chosen images are needed.
)
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
if opt.max_dataset_size == -1:
opt.max_dataset_size = float("inf")
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
# initialize logger
if opt.use_wandb:
wandb_run = (
wandb.init(project=opt.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run
)
wandb_run._label(repo="CycleGAN-and-pix2pix")
# create a website
web_dir = os.path.join(
opt.results_dir, opt.name, "{}_deb_{}".format(opt.phase, opt.epoch)
) # define the website directory
# web_dir
if opt.load_iter > 0: # load_iter is 0 by default
web_dir = "{:s}_iter{:d}".format(web_dir, opt.load_iter)
print("creating web directory", web_dir)
webpage = html.HTML(web_dir, "Experiment = %s, Phase = %s, Epoch = %s" % (opt.name, opt.phase, opt.epoch))
# test with eval mode. This only affects layers like batchnorm and dropout.
# For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode.
if opt.eval:
model.eval()
for i, data in enumerate(tqdm(dataset)):
# breakpoint()
if i < opt.delta:
continue
if (opt.num_test != -1) and (i >= opt.num_test + opt.delta): # only apply our model to opt.num_test images.
break
model.set_input(data) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
img_path = model.get_image_paths() # get image paths
sizeA = model.get_sizeA()
# breakpoint()
# if i % 5 == 0: # save images to an HTML file
# print('processing (%04d)-th image... %s' % (i, img_path))
save_images(
webpage,
visuals,
img_path,
sizeA,
aspect_ratio=opt.aspect_ratio,
width=opt.display_winsize,
use_wandb=opt.use_wandb,
)
webpage.save() # save the HTML