-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathOG.py
239 lines (182 loc) · 7.59 KB
/
OG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#%reload_ext signature
#%matplotlib inline
#https://www.raddq.com/dicom-processing-segmentation-visualization-in-python/ 14/06/19
#https://wiki.idoimaging.com/index.php?title=Sample_Data seems like the have some dicoms and a bit of niftis we can playwith 17/06/19
#https://www.researchgate.net/post/What_is_the_easiest_way_to_batch_resize_DICOM_files to down sample dicoms, incase if they're too large 17/06/19
#https://stackoverflow.com/questions/55560243/resize-a-dicom-image-in-python this one is for python. the one above is for mathlab, i didn't see
#https://stackoverflow.com/questions/48844778/create-a-obj-file-from-3d-array-in-python export mesh to obj 17/06/19
import numpy as np
import pydicom as dicom
import pydicom.pixel_data_handlers.gdcm_handler
import os
import matplotlib.pyplot as plt
from glob import glob
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import scipy.ndimage
from skimage import morphology
from skimage import measure
from skimage.transform import resize
from sklearn.cluster import KMeans
from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
from plotly.tools import FigureFactory as FF
from plotly.graph_objs import *
data_path = "/Users/apple/Desktop/samples1/"
output_path = working_path = "/Users/apple/Desktop/output/"#todo actually create file
g = glob(data_path + '/*.dcm')
# Print out the first 5 file names to verify we're in the right folder.
#print ("Total of %d DICOM images.\nFirst 5 filenames:" % len(g))
#print ('\n'.join(g[:5]))
#
# Loop over the image files and store everything into a list.
#
def load_scan(path):
slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
slices.sort(key = lambda x: int(x.InstanceNumber))
try:
slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2])
except:
slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation)
for s in slices:
s.SliceThickness = slice_thickness
return slices
def get_pixels_hu(scans):
image = np.stack([s.pixel_array for s in scans])
# Convert to int16 (from sometimes int16),
# should be possible as values should always be low enough (<32k)
image = image.astype(np.int16)
# Set outside-of-scan pixels to 1
# The intercept is usually -1024, so air is approximately 0
image[image == -2000] = 0
# Convert to Hounsfield units (HU)
intercept = scans[0].RescaleIntercept
slope = scans[0].RescaleSlope
if slope != 1:
image = slope * image.astype(np.float64)
image = image.astype(np.int16)
image += np.int16(intercept)
return np.array(image, dtype=np.int16)
patient = load_scan(data_path)#hi
#============================choose file=====================================
fileoption = "fullimages_%d.npy"
theoption = 1
if theoption:
fileoption = "fullimages_%d.npy"
else:
fileoption = "fullimagesfromnifti_%d.npy"
#============================choose file=====================================
id=0
generateNumPy = 0#flip the switch
if generateNumPy:
imgs = get_pixels_hu(patient)
#------save to output
np.save(output_path + fileoption % (id), imgs)
displayHUasGraph = 0
if displayHUasGraph:
file_used = "..."
file_used=output_path+fileoption % id
imgs_to_process = np.load(file_used).astype(np.float64)
plt.hist(imgs_to_process.flatten(), bins=50, color='c')
plt.xlabel("Hounsfield Units (HU)")
plt.ylabel("Frequency")
plt.show()
displayTHICCness = 0
if displayTHICCness:
patient = load_scan(data_path)
print ("Slice Thickness: %f" % patient[0].SliceThickness)
print ("Pixel Spacing (row, col): (%f, %f) " % (patient[0].PixelSpacing[0], patient[0].PixelSpacing[1]))
displayImageStack = 0#ill look at this later
if displayImageStack:
id = 0
imgs_to_process = np.load(output_path+'fullimages_{}.npy'.format(id))
def sample_stack(stack, rows=6, cols=6, start_with=10, show_every=3):
fig,ax = plt.subplots(rows,cols,figsize=[12,12])
for i in range(rows*cols):
ind = start_with + i*show_every
ax[int(i/rows),int(i % rows)].set_title('slice %d' % ind)
ax[int(i/rows),int(i % rows)].imshow(stack[ind],cmap='gray')
ax[int(i/rows),int(i % rows)].axis('off')
plt.show()
sample_stack(imgs_to_process)
resampling = 0
if resampling:
#id = 0
patient = load_scan(data_path)
print(fileoption)
fileoption_resamp = fileoption[:-6]+("%d.npy"%id)
imgs_to_process = np.load(output_path+fileoption_resamp)#'fullimages_{}.npy'+fileoption.format(id)
def resample(image, scan, new_spacing=[1,1,1]):
# Determine current pixel spacing
try:
spacing = map(float, ([scan[0].SliceThickness] + [patient[0].PixelSpacing[0], patient[0].PixelSpacing[1]]))
spacing = np.array(list(spacing))
except:
print(len(patient[0].PixelSpacing))
print ("Pixel Spacing (row, col): (%f, %f) " % (patient[0].PixelSpacing[0], patient[0].PixelSpacing[1]))
print("something went sooooooooooooooooooooooooooooo wrong")
exit()
resize_factor = spacing / new_spacing
new_real_shape = image.shape * resize_factor
new_shape = np.round(new_real_shape)
real_resize_factor = new_shape / image.shape
new_spacing = spacing / real_resize_factor
image = scipy.ndimage.interpolation.zoom(image, real_resize_factor)
return image, new_spacing
print ("Shape before resampling\t", imgs_to_process.shape)
imgs_after_resamp, spacing = resample(imgs_to_process, patient, [1,1,1])
print ("Shape after resampling\t", imgs_after_resamp.shape)
def make_mesh(image, threshold=-300, step_size=1):
print ("Transposing surface")
#print("threshold is " + threshold)
p = image.transpose(2,1,0)
print ("Calculating surface")
#https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.marching_cubes_lewiner
verts, faces, norm, val = measure.marching_cubes_lewiner(p, threshold, step_size=step_size, allow_degenerate=True)
return verts, faces, norm
def plotly_3d(verts, faces):
x,y,z = zip(*verts)
print ("Drawing")
# Make the colormap single color since the axes are positional not intensity.
# colormap=['rgb(255,105,180)','rgb(255,255,51)','rgb(0,191,255)']
colormap=['rgb(236, 236, 212)','rgb(236, 236, 212)']
fig = FF.create_trisurf(x=x,
y=y,
z=z,
plot_edges=False,
colormap=colormap,
simplices=faces,
backgroundcolor='rgb(64, 64, 64)',
title="Interactive Visualization")
iplot(fig)
def plt_3d(verts, faces):
print ("Drawing")
x,y,z = zip(*verts)
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection='3d')
# Fancy indexing: `verts[faces]` to generate a collection of triangles
mesh = Poly3DCollection(verts[faces], linewidths=0.05, alpha=1)
face_color = [1, 1, 0.9]
mesh.set_facecolor(face_color)
ax.add_collection3d(mesh)
ax.set_xlim(0, max(x))
ax.set_ylim(0, max(y))
ax.set_zlim(0, max(z))
ax.set_facecolor((0.7, 0.7, 0.7))#was set_axis_bgcolor
plt.show()
outid = 5
letsdothis = 1
if letsdothis:
thresholdinput = input("Please enter HU threshold(int): ")
#v, f, n = make_mesh(imgs_after_resamp, int(thresholdinput), 1)#350
#plt_3d(v, f)
tempnif = np.load(output_path+"fullimagesfromnifti_1.npy")
v, f, n = make_mesh(tempnif, int(thresholdinput), 1)#350
f=f+1#not 100% sure why we need this. the mesh looks 'weird' without it ref >>>>>> https://stackoverflow.com/questions/48844778/create-a-obj-file-from-3d-array-in-python 18/06/19
thefile = open(output_path + 'OBJs/test%d.obj' % outid, 'w')
for item in v:
thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2]))
for item in n:
thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2]))
for item in f:
thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2]))
thefile.close()