-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathcnn_model.py
160 lines (125 loc) · 4.73 KB
/
cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
A conv net model using tflearn wrapper for tensorflow
"""
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation
from tflearn.layers.normalization import local_response_normalization
import tensorflow as tf
import pickle
import pandas as pd
import numpy as np
import h5py
class CNNModel(object):
"""
Initializes a convolution neural network model for training, prediction, and visualization
"""
def __init__(self, network = None):
self.network = network
self.model = None
def preprocessing(self):
"""
Make sure the data is normalized
"""
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
return img_prep
def augmentation(self):
"""
Create extra synthetic training data by flipping, rotating and blurring the
images on our data set.
"""
img_aug = ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_rotation(max_angle=25.)
img_aug.add_random_blur(sigma_max=3.)
return img_aug
def input_layer(self, X_images, name):
"""
Define Input layer
"""
img_prep = self.preprocessing()
img_aug = self.augmentation()
self.network = input_data(shape = [None, X_images.shape[1], X_images.shape[2], X_images.shape[3]],
data_preprocessing = img_prep,
data_augmentation = img_aug,
name = name)
return self.network
def convolution_layer(self, num_filters, filter_size, name, activation_type = 'relu', regularizer = None):
"""
Creates a 2D-conv layer
Args:
-----
num_filters = takes an integer
filter_size = takes an integer
name = takes a string
activation = takes a string
regularizer = 'L1' or 'L2' or None
"""
self.network = conv_2d(self.network, num_filters,\
filter_size, activation = activation_type, regularizer = regularizer, name = name)
return self.network
def max_pooling_layer(self, kernel_size, name):
"""
It is common to periodically insert a Pooling layer in-between successive Conv layers
in a ConvNet architecture. Its function is to progressively reduce the spatial size of
the representation to reduce the amount of parameters and computation in the
network, and hence to also control overfitting.
args:
-----
kernel_size: takes an integer
name : a str representing name of the layer
"""
self.network = max_pool_2d(self.network, kernel_size, name = name)
return self.network
def fully_connected_layer(self, num_units, activation_type, name):
"""
Neurons in a fully connected layer have full connections to all activations in the previous
layer, as seen in regular Neural Networks. Their activations can hence be computed with
a matrix multiplication followed by a bias offset.
args:
------
num_units: an integer representing number of units in the layer
"""
self.network = fully_connected(self.network, num_units,\
activation= activation_type, name = name)
return self.network
def dropout_layer(self, name, prob = 0.5):
"""
args
------
prob = float representing dropout probability
"""
if (prob > 1) or (prob < 0):
raise ValueError('Probability values should e between 0 and 1')
self.network = dropout(self.network, prob, name = name)
return self.network
def define_network(self, X_images, mode = 'testtrain'):
"""
Creates a regression network
Args:
-------
X_images: A HDF5 datasets representing input layer
Returns
A CNN network
if mode is visual: then it returns intermediate layers as well
"""
inp_layer = self.input_layer(X_images, name = 'inpu1')
conv_layer_1 = self.convolution_layer(32, 5, 'conv1', 'relu', 'L2') # 50 filters, with size 3
mp_layer_1 = self.max_pooling_layer(2, 'mp1') # downsamples spatial size by 2
conv_layer_2 = self.convolution_layer(64, 5, 'conv2', 'relu', 'L2')
conv_layer_3 = self.convolution_layer(64, 3, 'conv3', 'relu', 'L2')
mp_layer_2 = self.max_pooling_layer(2, 'mp2')
fully_connected_layer_1 = self.fully_connected_layer(512,'relu', 'fl1')
dropout_layer_1 = self.dropout_layer('dp1', 0.5)
softmax_layer = self.fully_connected_layer(2, 'softmax', 'fl2')
self.network = regression(self.network, optimizer = 'adam',\
loss = 'categorical_crossentropy', learning_rate = 0.001)
if mode == 'testtrain':
return self.network
if mode == 'visual':
return conv_layer_1, conv_layer_2, conv_layer_3, self.network