-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathmain.py
91 lines (67 loc) · 2.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import cv2
import numpy as np
from torchvision.transforms import ToTensor, ToPILImage
from torchvision import transforms
from PIL import Image
# Load a pre-trained SRCNN model (for demo purposes, use a simple model or load a pre-trained one)
class SRCNN(torch.nn.Module):
def __init__(self):
super(SRCNN, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 64, kernel_size=9, padding=4)
self.conv2 = torch.nn.Conv2d(64, 32, kernel_size=5, padding=2)
self.conv3 = torch.nn.Conv2d(32, 1, kernel_size=5, padding=2)
def forward(self, x):
x = torch.nn.functional.relu(self.conv1(x))
x = torch.nn.functional.relu(self.conv2(x))
x = self.conv3(x)
return x
# Initialize the model and load weights if available
model = SRCNN()
model.load_state_dict(torch.load('srcnn_pretrained.pth', map_location='cpu'))
model.eval()
def super_resolve_image(img_path):
image = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
image = cv2.resize(image, (image.shape[1] * 2, image.shape[0] * 2)) # Upscale by factor 2
image = ToTensor()(image).unsqueeze(0)
with torch.no_grad():
output = model(image)
output_image = output.squeeze().clamp(0, 1).cpu()
output_image = ToPILImage()(output_image)
output_image.save("super_resolved_image.jpg")
output_image.show()
def denoise_image(img_path):
image = cv2.imread(img_path)
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
cv2.imwrite("denoised_image.jpg", denoised_image)
cv2.imshow("Denoised Image", denoised_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
class ColorizationModel(torch.nn.Module):
# Define a simple U-Net or load pre-trained weights from a colorization model here
pass
def colorize_image(img_path):
image = Image.open(img_path).convert("L") # Convert to grayscale
image = transforms.ToTensor()(image).unsqueeze(0)
model = ColorizationModel()
model.load_state_dict(torch.load("colorization_model.pth", map_location="cpu"))
model.eval()
with torch.no_grad():
colorized = model(image)
# Convert colorized image back to an RGB format for saving and display
colorized_image = colorized.squeeze(0).permute(1, 2, 0).numpy()
colorized_image = np.clip(colorized_image * 255, 0, 255).astype("uint8")
colorized_image = Image.fromarray(colorized_image)
colorized_image.save("colorized_image.jpg")
colorized_image.show()
def process_image(img_path):
print("Starting Super-Resolution...")
super_resolve_image(img_path)
print("Super-Resolution Completed.")
print("Starting Denoising...")
denoise_image("super_resolved_image.jpg")
print("Denoising Completed.")
print("Starting Colorization...")
colorize_image("denoised_image.jpg")
print("Colorization Completed.")
process_image("input_image.jpg")