-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathapp.py
151 lines (122 loc) · 6.43 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import streamlit as st
from dotenv import load_dotenv
from langchain_community.document_loaders import WebBaseLoader
from langchain_groq import ChatGroq
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.exceptions import OutputParserException
import re
# Load environment variables
load_dotenv()
def clean_text(text):
text = re.sub(r'<[^>]*?>', '', text)
text = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', text)
text = re.sub(r'[^a-zA-Z0-9 ]', '', text)
text = re.sub(r'\\s{2,}', ' ', text)
text = text.strip()
text = ' '.join(text.split())
return text
class Chain:
def __init__(self):
self.llm = ChatGroq(temperature=0, groq_api_key=os.getenv("GROQ_API_KEY"), model_name="llama-3.1-70b-versatile")
def extract_jobs(self, cleaned_text):
prompt_extract = PromptTemplate.from_template(
"""
### SCRAPED TEXT FROM WEBSITE:
{page_data}
### INSTRUCTION:
The scraped text is from the career's page of a website.
Your job is to extract the job postings and return them in JSON format containing the following keys: `role`, `experience`, `skills` and `description`.
Only return the valid JSON.
### VALID JSON (NO PREAMBLE):
"""
)
chain_extract = prompt_extract | self.llm
res = chain_extract.invoke(input={"page_data": cleaned_text})
try:
json_parser = JsonOutputParser()
res = json_parser.parse(res.content)
except OutputParserException:
raise OutputParserException("Context too big. Unable to parse jobs.")
return res if isinstance(res, list) else [res]
def write_mail(self, job, links, user_name, user_about):
prompt_email = PromptTemplate.from_template(
"""
### JOB DESCRIPTION:
{job_description}
### INSTRUCTION:
You are {user_name}. {user_about}
Your job is to write a cold email to the client regarding the job mentioned above, describing how you can contribute to fulfilling their needs.
Also, add the most relevant ones from the following links to showcase portfolio: {link_list}
Do not provide a preamble.
### EMAIL (NO PREAMBLE):
"""
)
chain_email = prompt_email | self.llm
res = chain_email.invoke({"job_description": str(job), "link_list": links, "user_name": user_name, "user_about": user_about})
return res.content
class Portfolio:
def __init__(self):
if 'portfolio' not in st.session_state:
st.session_state['portfolio'] = []
def add_to_portfolio(self, skills, links):
if skills and links:
st.session_state['portfolio'].append({"skills": skills, "links": links})
def query_links(self, required_skills):
if not required_skills:
return []
matched_links = []
for entry in st.session_state['portfolio']:
portfolio_skills = entry['skills']
if any(skill in portfolio_skills for skill in required_skills):
matched_links.append(entry['links'])
return matched_links[:2]
def create_streamlit_app(llm, portfolio, clean_text):
st.set_page_config(page_title="Cold Email Generator", page_icon="", layout="wide")
st.markdown("<div class='title'>Cold Email Generator</div>", unsafe_allow_html=True)
st.markdown("<div class='subtitle'>Effortlessly craft professional cold emails for job applications based on job postings.</div>", unsafe_allow_html=True)
st.markdown("<div class='container'>", unsafe_allow_html=True)
user_name = st.text_input("Enter your name:", value=st.session_state.get('user_name', ""))
user_about = st.text_area("Enter a brief description about yourself:", value=st.session_state.get('user_about', ""))
url_input = st.text_input("Enter a Job Post URL:", value=st.session_state.get('url_input', ""))
st.subheader("Enter Your Skills and Portfolio Links")
skills_input = st.text_area("Enter your skills (comma separated):", value=st.session_state.get('skills_input', ""))
links_input = st.text_area("Enter your portfolio links (comma separated):", value=st.session_state.get('links_input', ""))
submit_button = st.button("Submit", key='submit_button', help="Click to generate the cold email")
if submit_button:
try:
st.session_state['user_name'] = user_name
st.session_state['user_about'] = user_about
st.session_state['url_input'] = url_input
st.session_state['skills_input'] = skills_input
st.session_state['links_input'] = links_input
skills_list = [skill.strip() for skill in skills_input.split(",")]
links_list = [link.strip() for link in links_input.split(",")]
portfolio.add_to_portfolio(skills_list, links_list)
loader = WebBaseLoader([url_input])
data = clean_text(loader.load().pop().page_content)
jobs = llm.extract_jobs(data)
for job in jobs:
job_skills = job.get('skills', [])
links = portfolio.query_links(job_skills)
email = llm.write_mail(job, links, user_name, user_about)
st.session_state['draft_email'] = email
except Exception as e:
st.error(f"An Error Occurred: {e}")
if 'draft_email' in st.session_state:
st.text_area("Edit Email", value=st.session_state['draft_email'], key='edit_email', height=300)
if st.button("Save Draft"):
st.session_state['final_email'] = st.session_state['edit_email']
st.success("Draft saved successfully!")
if 'final_email' in st.session_state:
st.markdown(f"<div class='code-block'><pre>{st.session_state['final_email']}</pre></div>", unsafe_allow_html=True)
# Add a copy button using Streamlit built-in feature
st.code(st.session_state['final_email'], language='text')
# Download button for the email
st.download_button(label="Download Email", data=st.session_state['final_email'], file_name="cold_email.txt", mime="text/plain")
st.markdown("</div>", unsafe_allow_html=True)
if __name__ == "__main__":
chain = Chain()
portfolio = Portfolio()
create_streamlit_app(chain, portfolio, clean_text)