-
Notifications
You must be signed in to change notification settings - Fork 214
/
Copy pathapp1.py
61 lines (40 loc) · 1.27 KB
/
app1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# This Streamlit App is for the Machine Learning model.
import streamlit as st
from nltk.stem import WordNetLemmatizer
import pickle
import nltk
import string
from nltk.corpus import stopwords
lemmatizer = WordNetLemmatizer()
# function of Data Preprocessing.
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(lemmatizer.lemmatize(i))
return " ".join(y)
# Store the model in your file
# here we can store the tfidf and model pkl file in a specfic folder and use it.
tfidf=pickle.load(open('vectorizer.pkl','rb'))
model=pickle.load(open('best_model.pkl','rb'))
st.title('SMS Spam Classification')
sms_input=st.text_area("Enter the text")
if st.button('Predict'):
transform_sms=transform_text(sms_input)
vector_input=tfidf.transform([transform_sms])
result=model.predict(vector_input)[0]
if result==1:
st.title("SMS is Spam")
else:
st.title("SMS is not Spam")