This repository has been archived by the owner on May 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path2a_model.R
284 lines (249 loc) · 11.8 KB
/
2a_model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
source("2a_model/src/format_site_splits.R")
source("2a_model/src/model_ready_data_utils.R")
source("2a_model/src/write_model_config_files.R")
p2a_targets_list <- list(
## 1) COMBINE AND FORMAT MODEL-READY INPUTS AND OUTPUTS ##
# join met data with light input data
tar_target(
p2a_met_light_data,
p2_met_data_at_obs_sites %>%
mutate(date = as.Date(time, tz = 'UTC')) %>%
left_join(y = p2_daily_max_light %>%
select(COMID, date_localtime, frac_light) %>%
# format column names
rename(light_ratio = frac_light,
date = date_localtime),
by = c("COMID", "date")) %>%
select(-time) %>%
relocate(date, .after = COMID)
),
# Summarize site splits/groups based on the above 3 targets
tar_target(
p2a_site_splits,
{
site_splits <- p2_sites_w_segs %>%
filter(site_id %in% c(validation_sites_nonurban, validation_sites_urban)) %>%
mutate(site_type = case_when(site_id %in% validation_sites_urban ~ "dissimilar urban",
site_id %in% validation_sites_nonurban & site_id != "014721259" ~ "train",
site_id == "014721259" ~ "dissimilar headwater",
TRUE ~ NA_character_),
river_basin = case_when(grepl("schuylkill", site_name, ignore.case = TRUE) ~ "Schuylkill",
grepl("brandywine", site_name, ignore.case = TRUE) ~ "Brandywine",
grepl("Cobbs", site_name, ignore.case = TRUE) ~ "Cobbs",
TRUE ~ ""),
# assign epsg codes based on "datum" column and convert
# data frame to sf object
epsg = case_when(datum == "NAD83" ~ 4269,
datum == "WGS84" ~ 4326,
datum == "NAD27" ~ 4267,
datum == "UNKWN" ~ 4326,
datum == "OTHER" ~ 4326)) %>%
sf::st_as_sf(., coords = c("lon","lat"), crs = unique(.$epsg))
append_river_km(site_splits, p1_nhd_reaches_sf) %>%
mutate(river_dist_km = round(river_dist_km, 0),
river_basin_abbr = case_when(river_basin == "Schuylkill" ~ "SR",
river_basin == "Brandywine" ~ "BC",
river_basin == "Cobbs" ~ "CC",
site_id %in% c("014721254") ~ "FC",
site_id %in% c("014721259") ~ "BAP")) %>%
mutate(site_name_abbr = if_else(!is.na(river_dist_km),
paste0(river_basin_abbr, "_", river_dist_km),
river_basin_abbr))
}
),
# join met and light data with site_ids (resulting data frame will have
# 16 unique COMID's which matches the number of well-observed reaches).
tar_target(
p2a_met_data_w_sites,
match_site_ids_to_segs(p2a_met_light_data, p2_sites_w_segs)
),
# join segment attributes with site_ids (resulting data frame will have one
# row for each unique COMID x site_id in the lower DRB; n = 10,111).
tar_target(
p2a_seg_attr_w_sites,
match_site_ids_to_segs(p2_seg_attr_data, p2_sites_w_segs)
),
# join the metabolism data with the DO observations (use full_join to include
# all rows in both the DO data and the metab data).
tar_target(
p2a_do_and_metab,
p2_daily_with_seg_ids %>%
full_join(p2_metab_filtered, by = c("site_id", "date"))
),
## 2) WRITE MODEL CONFIGURATION FILES ##
# Write base config file using inputs and parameters defined in _targets.R
tar_target(
p2a_config_base_yml,
write_config_file(cfg_options = base_config_options,
fileout = "2a_model/src/models/config_base.yml"),
format = "file"
),
# Write model config file for 0_baseline_LSTM
tar_target(
p2a_config_baseline_LSTM_yml,
write_config_file(cfg_options = model_config_options,
fileout = "2a_model/src/models/0_baseline_LSTM/config.yml",
exp_name = "0_baseline_LSTM"),
format = "file"
),
# Write model config file for 1_metab_multitask
tar_target(
p2a_config_metab_multitask_yml,
write_config_file(cfg_options = metab_multitask_config_options,
fileout = "2a_model/src/models/1_metab_multitask/config.yml",
exp_name = "1_metab_multitask"),
format = "file"
),
# Write model config file for 1a_multitask_do_gpp_er
tar_target(
p2a_config_1a_metab_multitask_yml,
write_config_file(cfg_options = metab_1a_multitask_config_options,
fileout = "2a_model/src/models/1_metab_multitask/1a_multitask_do_gpp_er.yml",
exp_name = "1a_multitask_do_gpp_er"),
format = "file"
),
# Write model config file for 1b_multitask_do_gpp
tar_target(
p2a_config_1b_metab_multitask_yml,
write_config_file(cfg_options = metab_1b_multitask_config_options,
fileout = "2a_model/src/models/1_metab_multitask/1b_multitask_do_gpp.yml",
exp_name = "1b_multitask_do_gpp"),
format = "file"
),
# Write model config file for 2_multitask_dense
tar_target(
p2a_config_multitask_dense_yml,
write_config_file(cfg_options = multitask_dense_config_options,
fileout = "2a_model/src/models/2_multitask_dense/config.yml",
exp_name = "2_multitask_dense"),
format = "file"
),
## 3) WRITE OUT PARTITION INPUT AND OUTPUT DATA ##
# Subset trn/val input and output data to well-observed sites and format
# for export. [Jeff]: note - I have to subset inputs to only include the
# train/val sites before passing to subset_and_write_zarr or else I get a
# memory error on the join.
tar_target(
p2a_well_obs_data,
{
# use inner_join to keep sites that are within the set of trn/val sites
# and are represented in both the met data and the seg attr data.
inputs <- p2a_met_data_w_sites %>%
filter(site_id %in% p2_well_observed_sites) %>%
inner_join(p2a_seg_attr_w_sites, by = c("site_id", "COMID"))
inputs_and_outputs <- inputs %>%
left_join(p2a_do_and_metab, by = c("site_id", "COMID", "date"))
inputs_and_outputs
}
),
# Write trn and val input and output data to zarr. Note that if the name of
# well_obs_io.zarr is changed below, this change must also be made in
# 2a_model/src/Snakefile_base.smk (lines 32, 103, and 177) and in
# 2a_model/src/visualize_models.smk (line 6).
tar_target(
p2a_well_obs_data_zarr,
write_df_to_zarr(p2a_well_obs_data, c("site_id", "date"), "2a_model/out/well_obs_io.zarr"),
format = "file"
),
## 5) GATHER MODEL IDS AND KICK OFF SNAKEMAKE WORKFLOW TO MAKE MODEL PREDICTIONS ##
# gather model ids - add to this list when you want to reproduce
# outputs from a new model
tar_target(
p2a_model_ids,
# paths are relative to 2a_model/src/models
list(
list(model_id = "0_baseline_LSTM",
snakefile_dir = "0_baseline_LSTM",
config_path = stringr::str_remove(p2a_config_baseline_LSTM_yml, "2a_model/src/models/")),
#the 1_ models use the same model and therefore the same Snakefile
#as the 0_baseline_LSTM run
list(model_id = "1_metab_multitask",
snakefile_dir = "0_baseline_LSTM",
config_path = stringr::str_remove(p2a_config_metab_multitask_yml, "2a_model/src/models/")),
list(model_id = "1a_multitask_do_gpp_er",
snakefile_dir = "0_baseline_LSTM",
config_path = stringr::str_remove(p2a_config_1a_metab_multitask_yml, "2a_model/src/models/")),
list(model_id = "2_multitask_dense",
snakefile_dir = "2_multitask_dense",
config_path = stringr::str_remove(p2a_config_multitask_dense_yml, "2a_model/src/models/"))
),
iteration = "list"
),
# produce the final metrics files (and all intermediate files including predictions)
# of each "model_id" with snakemake
tar_target(
p2a_metrics_files,
{
# we need these to make the prepped data file, so force a dependency of this
# target on p2a_well_obs_data.
p2a_well_obs_data
p2a_well_obs_data_zarr
base_dir <- "2a_model/src/models"
snakefile_path <- file.path(base_dir, p2a_model_ids$snakefile_dir, "Snakefile")
prepped_snakefile_path <- file.path(base_dir, "Snakefile_prepped.smk")
config_path <- file.path(base_dir, p2a_model_ids$config_path)
# this path is relative to the Snakefile
prepped_data_file <- file.path("../../../out/models",p2a_model_ids$model_id, "prepped.npz")
# make sure the directory is unlocked (this has been a hangup for me)
system(stringr::str_glue("snakemake -s {snakefile_path} --configfile {config_path} --unlock"))
# First create the prepped data files if they are not already.
# These are needed to make the predictions.
system(stringr::str_glue("snakemake -s {prepped_snakefile_path} --configfile {config_path} -j"))
# Then touch all of the existing files. This makes the weights "up-to-date"
# so snakemake doesn't train the models again
system(stringr::str_glue("snakemake -s {snakefile_path} --configfile {config_path} -j --touch --rerun-incomplete"))
# then run the snakemake pipeline to produce the predictions and metric files
system(stringr::str_glue("snakemake -s {snakefile_path} --configfile {config_path} -j --rerun-incomplete --rerun-trigger mtime -T 5 -k"))
# print out the metrics file name for the target
c(
file.path("2a_model/out/models", p2a_model_ids$model_id, "exp_overall_metrics.csv"),
file.path("2a_model/out/models", p2a_model_ids$model_id, "exp_reach_metrics.csv"),
file.path("2a_model/out/models", p2a_model_ids$model_id, "exp_month_reach_metrics.csv"),
file.path("2a_model/out/models", p2a_model_ids$model_id, "exp_month_metrics.csv"),
file.path("2a_model/out/models", p2a_model_ids$model_id, paste0(p2a_model_ids$model_id, "_func_perf.csv"))
)
},
format="file",
pattern = map(p2a_model_ids)
),
# metric types so we can map over them
tar_target(
p2a_metric_types,
{
c("overall", "reach", "month_reach", "month")
},
),
# combining the individual predictive performance (PP) metrics files from four different model experiments into one data frame for each metric type (i.e., overall metrics, overall reach metrics, reach metrics by month, overall metrics by month).
tar_target(
p2a_PP_metrics_files,
{
metric_files = grep(paste0("exp_", p2a_metric_types, "_metrics"), p2a_metrics_files, value=TRUE)
out_file_name = paste0("2a_model/out/models/combined_", p2a_metric_types, "_metrics.csv")
lapply(metric_files, function(x){
dat <- readr::read_csv(x, show_col_types = FALSE) %>%
mutate(model_id = str_replace_all(x, paste0('2a_model/out/models/|/exp_', p2a_metric_types, '_metrics.csv'), ''))
}) %>%
bind_rows() %>%
write_csv(out_file_name)
out_file_name
},
format="file",
pattern = map(p2a_metric_types)
),
# combining the functional performance files into one
tar_target(
p2a_FP_metrics_file,
{
overall_metric_files = grep("func_perf", p2a_metrics_files, value=TRUE)
overall_metric_files <- append(overall_metric_files,
"2a_model/out/models/2_multitask_dense/observed_func_perf.csv")
out_file_name = "2a_model/out/models/combined_FP_metrics.csv"
lapply(overall_metric_files, function(x){
dat <- readr::read_csv(x, show_col_types = FALSE)}) %>%
bind_rows() %>%
write_csv(out_file_name)
out_file_name
},
format="file",
)
)