forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_gaze.py
89 lines (75 loc) · 2.7 KB
/
trainer_gaze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from argparse import ArgumentParser
import os
import os.path as osp
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
import timm
from datasets.dataset_gaze import GazeDataset, DataLoaderX
from models import GazeModel
def cli_main():
pl.seed_everything(727)
# ------------
# args
# ------------
parser = ArgumentParser()
parser.add_argument('--backbone', default='resnet101d', type=str)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--epoch', default=16, type=int)
parser.add_argument('--root', default='data/gaze_refine', type=str)
parser.add_argument('--num-gpus', default=8, type=int)
parser.add_argument('--tf32', action='store_true')
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
if not args.tf32:
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
else:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
# ------------
# data
# ------------
train_set = GazeDataset(root_dir=args.root, is_train=True)
val_set = GazeDataset(root_dir=args.root, is_train=False)
print('train data size:', len(train_set))
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=2, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False)
# ------------
# model
# ------------
model = GazeModel(backbone=args.backbone, epoch=args.epoch)
ckpt_path = 'work_dirs/gaze'
if not os.path.exists(ckpt_path):
os.makedirs(ckpt_path)
# ------------
# training
# ------------
checkpoint_callback = ModelCheckpoint(
monitor='val_loss',
dirpath=ckpt_path,
filename='{epoch:02d}-{val_loss:.6f}',
save_top_k=5,
mode='min',
)
lr_monitor = LearningRateMonitor(logging_interval='step')
trainer = pl.Trainer(
gpus = args.num_gpus,
accelerator="gpu",
strategy="ddp",
benchmark=True,
logger=TensorBoardLogger(osp.join(ckpt_path, 'logs')),
callbacks=[checkpoint_callback, lr_monitor],
check_val_every_n_epoch=1,
#progress_bar_refresh_rate=1,
max_epochs=args.epoch,
)
trainer.fit(model, train_loader, val_loader)
if __name__ == '__main__':
cli_main()