-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment1.py
111 lines (94 loc) · 5.45 KB
/
experiment1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from tqdm import tqdm
from transformers import BlipProcessor, BlipForConditionalGeneration, BlipForImageTextRetrieval, CLIPModel, CLIPProcessor
from datasets import load_dataset
from utils import device, get_clm_loss, get_contrastive_score, get_itm_score, compute_image_score, clip_embeddings, get_clip_top_images
import argparse
import torch
import statistics
parser = argparse.ArgumentParser()
parser.add_argument("--eval_winoground", action="store_true")
parser.add_argument("--eval_flickr30k_ir", action="store_true")
args = parser.parse_args()
blip_clm_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_clm_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)
blip_clm_model.eval()
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
clip_model.eval()
blip_itm_processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-large-coco")
blip_itm_model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-large-coco").to(device)
blip_itm_model.eval()
winoground = load_dataset("facebook/winoground", use_auth_token=True)["test"]
flickr30k_test = load_dataset("Tristan/flickr30k_test", use_auth_token=True)["test"]
flickr30k_test = flickr30k_test.map(lambda example: clip_embeddings(example, clip_model, clip_processor))
if args.eval_flickr30k_ir:
clm_r1 = []
itm_r1 = []
contrastive_r1 = []
no_reranking_r1 = []
for example in tqdm(flickr30k_test):
ground_truth_img_id = example["img_id"]
for caption_idx in range(len(example["caption"])):
caption = example["caption"][caption_idx]
text_embed = example["text_embeds"][caption_idx]
min_clm_loss = None
clm_img_id = None
max_itm_score = None
itm_img_id = None
max_contrastive_score = None
contrastive_img_id = None
top_5 = get_clip_top_images(text_embed, flickr30k_test).select(range(5))
for example2 in top_5:
clm_loss = get_clm_loss(example2["image"], caption, blip_clm_model, blip_clm_processor)
if min_clm_loss is None or min_clm_loss > clm_loss:
min_clm_loss = clm_loss
clm_img_id = example2["img_id"]
itm_score = get_itm_score(example2["image"], caption, blip_itm_model, blip_itm_processor)
if max_itm_score is None or max_itm_score < itm_score:
max_itm_score = itm_score
itm_img_id = example2["img_id"]
contrastive_score = get_contrastive_score(example2["image"], caption, blip_itm_model, blip_itm_processor)
if max_contrastive_score is None or max_contrastive_score < contrastive_score:
max_contrastive_score = contrastive_score
contrastive_img_id = example2["img_id"]
clm_r1.append(int(ground_truth_img_id == clm_img_id))
itm_r1.append(int(ground_truth_img_id == itm_img_id))
contrastive_r1.append(int(ground_truth_img_id == contrastive_img_id))
no_reranking_r1.append(int(ground_truth_img_id == top_5[0]["img_id"]))
print("Flickr30k test R@1 with no reranking", statistics.mean(no_reranking_r1))
print("Flickr30k test R@1 with BLIP CLM head top 5 reranking", statistics.mean(clm_r1))
print("Flickr30k test R@1 with BLIP ITM head top 5 reranking", statistics.mean(itm_r1))
print("Flickr30k test R@1 with BLIP Contrastive head top 5 reranking", statistics.mean(contrastive_r1))
if args.eval_winoground:
clm_losses = []
itm_scores = []
contrastive_scores = []
for example in tqdm(winoground):
image_0 = example["image_0"]
image_1 = example["image_1"]
text_0 = example["caption_0"]
text_1 = example["caption_1"]
clm_losses.append({
"id" : example["id"],
"c0_i0": get_clm_loss(image_0, text_0, blip_clm_model, blip_clm_processor),
"c0_i1": get_clm_loss(image_1, text_0, blip_clm_model, blip_clm_processor),
"c1_i0": get_clm_loss(image_0, text_1, blip_clm_model, blip_clm_processor),
"c1_i1": get_clm_loss(image_1, text_1, blip_clm_model, blip_clm_processor),
})
itm_scores.append({
"id" : example["id"],
"c0_i0": get_itm_score(image_0, text_0, blip_itm_model, blip_itm_processor),
"c0_i1": get_itm_score(image_1, text_0, blip_itm_model, blip_itm_processor),
"c1_i0": get_itm_score(image_0, text_1, blip_itm_model, blip_itm_processor),
"c1_i1": get_itm_score(image_1, text_1, blip_itm_model, blip_itm_processor),
})
contrastive_scores.append({
"id" : example["id"],
"c0_i0": get_contrastive_score(image_0, text_0, blip_itm_model, blip_itm_processor),
"c0_i1": get_contrastive_score(image_1, text_0, blip_itm_model, blip_itm_processor),
"c1_i0": get_contrastive_score(image_0, text_1, blip_itm_model, blip_itm_processor),
"c1_i1": get_contrastive_score(image_1, text_1, blip_itm_model, blip_itm_processor),
})
print("Image Score (P(T | I) from BLIP CLM Head):", compute_image_score(clm_losses, higher_is_better=False))
print("Image Score (BLIP ITM Head):", compute_image_score(itm_scores))
print("Image Score (BLIP Contrastive Head):", compute_image_score(contrastive_scores))