diff --git a/math/gcd_of_n_numbers.cpp b/math/gcd_of_n_numbers.cpp index 92968ff1265..45ba0b074ef 100644 --- a/math/gcd_of_n_numbers.cpp +++ b/math/gcd_of_n_numbers.cpp @@ -1,41 +1,114 @@ /** * @file - * @brief This program aims at calculating the GCD of n numbers by division - * method + * @brief This program aims at calculating the GCD of n numbers + * + * @details + * The GCD of n numbers can be calculated by + * repeatedly calculating the GCDs of pairs of numbers + * i.e. \f$\gcd(a, b, c)\f$ = \f$\gcd(\gcd(a, b), c)\f$ + * Euclidean algorithm helps calculate the GCD of each pair of numbers + * efficiently * * @see gcd_iterative_euclidean.cpp, gcd_recursive_euclidean.cpp */ -#include +#include /// for std::abs +#include /// for std::array +#include /// for assert +#include /// for IO operations -/** Compute GCD using division algorithm - * - * @param[in] a array of integers to compute GCD for - * @param[in] n number of integers in array `a` - */ -int gcd(int *a, int n) { - int j = 1; // to access all elements of the array starting from 1 - int gcd = a[0]; - while (j < n) { - if (a[j] % gcd == 0) // value of gcd is as needed so far - j++; // so we check for next element - else - gcd = a[j] % gcd; // calculating GCD by division method +/** + * @namespace math + * @brief Maths algorithms + */ +namespace math { +/** + * @namespace gcd_of_n_numbers + * @brief Compute GCD of numbers in an array + */ +namespace gcd_of_n_numbers { +/** + * @brief Function to compute GCD of 2 numbers x and y + * @param x First number + * @param y Second number + * @return GCD of x and y via recursion + */ +int gcd_two(int x, int y) { + // base cases + if (y == 0) { + return x; + } + if (x == 0) { + return y; + } + return gcd_two(y, x % y); // Euclidean method +} + +/** + * @brief Function to check if all elements in the array are 0 + * @param a Array of numbers + * @return 'True' if all elements are 0 + * @return 'False' if not all elements are 0 + */ +template +bool check_all_zeros(const std::array &a) { + // Use std::all_of to simplify zero-checking + return std::all_of(a.begin(), a.end(), [](int x) { return x == 0; }); +} + +/** + * @brief Main program to compute GCD using the Euclidean algorithm + * @param a Array of integers to compute GCD for + * @return GCD of the numbers in the array or std::nullopt if undefined + */ +template +int gcd(const std::array &a) { + // GCD is undefined if all elements in the array are 0 + if (check_all_zeros(a)) { + return -1; // Use std::optional to represent undefined GCD + } + + // divisors can be negative, we only want the positive value + int result = std::abs(a[0]); + for (std::size_t i = 1; i < n; ++i) { + result = gcd_two(result, std::abs(a[i])); + if (result == 1) { + break; // Further computations still result in gcd of 1 } - return gcd; + } + return result; } +} // namespace gcd_of_n_numbers +} // namespace math -/** Main function */ -int main() { - int n; - std::cout << "Enter value of n:" << std::endl; - std::cin >> n; - int *a = new int[n]; - int i; - std::cout << "Enter the n numbers:" << std::endl; - for (i = 0; i < n; i++) std::cin >> a[i]; +/** + * @brief Self-test implementation + * @return void + */ +static void test() { + std::array array_1 = {0}; + std::array array_2 = {1}; + std::array array_3 = {0, 2}; + std::array array_4 = {-60, 24, 18}; + std::array array_5 = {100, -100, -100, 200}; + std::array array_6 = {0, 0, 0, 0, 0}; + std::array array_7 = {10350, -24150, 0, 17250, 37950, -127650, 51750}; + std::array array_8 = {9500000, -12121200, 0, 4444, 0, 0, 123456789}; - std::cout << "GCD of entered n numbers:" << gcd(a, n) << std::endl; + assert(math::gcd_of_n_numbers::gcd(array_1) == -1); + assert(math::gcd_of_n_numbers::gcd(array_2) == 1); + assert(math::gcd_of_n_numbers::gcd(array_3) == 2); + assert(math::gcd_of_n_numbers::gcd(array_4) == 6); + assert(math::gcd_of_n_numbers::gcd(array_5) == 100); + assert(math::gcd_of_n_numbers::gcd(array_6) == -1); + assert(math::gcd_of_n_numbers::gcd(array_7) == 3450); + assert(math::gcd_of_n_numbers::gcd(array_8) == 1); +} - delete[] a; - return 0; +/** + * @brief Main function + * @return 0 on exit + */ +int main() { + test(); // run self-test implementation + return 0; }