-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFlowReadme.txt
52 lines (38 loc) · 1.46 KB
/
FlowReadme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Data:
-class_info.py
def class_info()
-generate json for class name, number of images in the class, paths to 5 images
1) Upload
-user uploads images
-can apply transformations
2) Visualise
-generate data_viz.json
-visualise the dataset and few images
Network:
1)Display:
-already generated net_mod.json
-display the user selected network and layer wise image visualisations
2) Modify:
-take data from user, hyperameters to train the network on
3) Train:
-modify.py
def start_train(model_name, train_split, smote_facto)
-train the user chosen model, on specified hyper params
def new_epoch(train_loss, train_accuracy, val_loss, val_accuracy, epoch)
-saving the arrays to a dict
Results:
evaluate.py
-def start_eval(model_name,model,weights_path)
-evaluate on validation dataset
grad_lime.py
-def give_gradcam_and_lime(paths,corr_label,model_name,result_name)
-generate lime, grad cam results
1) Embeddigs
-Embedding of clustered images with predicted labels
-Predicted vs labels of best 5 classes and worst 5 classes
2) Wrong results
-Confusion matrix
-wrong images display
3)Suggestions
-Display Lime, Gradcam results
-Display explaination and suggestions why the model is failing