-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtorch2onnx.py
95 lines (76 loc) · 3.57 KB
/
torch2onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# ====TensorRT Hackathon 2022 Medcare AI Lab====
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
'''
MST++ Pytorch模型转ONNX, 同时支持Static, Dynamic shape和onnx-simplifier
'''
import os
import argparse
import architecture
import torchsummary
import torch
import torch.onnx
import onnx
from onnxsim import simplify
import warnings
warnings.filterwarnings("ignore")
def pth_to_onnx(checkpoint, onnx_path, input_names=['input'], output_names=['output'],batch_size=1,dynamic=False,simplifier=False):
if not onnx_path.endswith('.onnx'):
print('Warning! The onnx model name is not correct,\
please give a name that ends with \'.onnx\'!')
return 0
with torch.no_grad():
model = architecture.MST_Plus_Plus() # 导入模型
check_point = torch.load(checkpoint)
model.load_state_dict(check_point['state_dict']) # 初始化权重
model.eval()
model.to("cpu")
torchsummary.summary(model, (3, 512, 482), device='cpu')
if dynamic:
input = torch.randn(1, 3, 512, 482, device='cpu')
device = torch.device('cpu')
dynamic_axes = {input_names[0]:{0:"batch_size"},output_names[0]:{0:"batch_size"}}
torch.onnx.export(model, input, onnx_path, verbose=False, input_names=input_names,
output_names=output_names, opset_version=13,
dynamic_axes=dynamic_axes)
else:
input = torch.randn(batch_size, 3, 512, 482, device='cpu')
device = torch.device('cpu')
torch.onnx.export(model, input, onnx_path, verbose=False, input_names=input_names,
output_names=output_names, opset_version=13)
if simplifier:
#simplifier onnx
model = onnx.load(onnx_path)
# simplifying dynamic model
simplified_model, check = simplify(model,
input_shapes={input_names[0]: [batch_size, 3, 512, 482]},
dynamic_input_shape=dynamic)
onnx.save(simplified_model,onnx_path)
print("Exporting .pth model to onnx model has been successful!")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MST++ Pytorch Model to ONNX Model')
parser.add_argument('--checkpoint', type= str , default='./model/mst_plus_plus.pth', help='MST++ Pytorch Model Saved Dir')
parser.add_argument('--dynamic', action="store_true", help='Dynamic ONNX Model')
parser.add_argument('--onnx_path', type=str,default='./model/mst_plus_plus.onnx', help="ONNX saved path")
parser.add_argument('--simplifier',action="store_true", help='onnx-simplifier ONNX Model')
parser.add_argument('--batch_size',type=int,default=1, help="Batch Size")
args = parser.parse_args()
checkpoint = args.checkpoint
onnx_path = args.onnx_path
dynamic = args.dynamic
simplifier = args.simplifier
batch_size = args.batch_size
pth_to_onnx(checkpoint, onnx_path,batch_size=batch_size,dynamic=dynamic,simplifier=simplifier)