-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmst_onnxparser.py
126 lines (106 loc) · 5.57 KB
/
mst_onnxparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# ====TensorRT Hackathon 2022 Medcare AI Lab====
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
'''
ONNXParser MST++ TemsorRT INT8量化 calibrator for PTQ!
'''
import os
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda
import numpy as np
import time
import argparse
# add verbose
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) # ** engine可视化 **
# create tensorrt-engine
# fixed and dynamic
def get_engine(max_batch_size=1, onnx_file_path="", engine_file_path="",\
mode="FP32", calibration_stream=None, calibration_table_path="", save_engine=False):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
def build_engine(max_batch_size, save_engine):
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, \
builder.create_network(1) as network,\
builder.create_builder_config() as config, \
trt.OnnxParser(network, TRT_LOGGER) as parser, \
trt.Runtime(TRT_LOGGER) as runtime:
# parse onnx model file
if not os.path.exists(onnx_file_path):
quit('ONNX file {} not found'.format(onnx_file_path))
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
assert network.num_layers > 0, 'Failed to parse ONNX model. \
Please check if the ONNX model is compatible '
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
# build trt engine
builder.max_batch_size = max_batch_size
config.max_workspace_size = 1 << 30 # 1GB
if mode == "FP16":
config.set_flag(trt.BuilderFlag.FP16)
print('FP16 mode enabled')
if mode == "INT8":
config.set_flag(trt.BuilderFlag.INT8)
assert calibration_stream, 'Error: a calibration_stream should be provided for int8 mode'
config.int8_calibrator = Calibrator(calibration_stream, calibration_table_path)
print('Int8 mode enabled')
# Build engine and do int8 calibration.
plan = builder.build_serialized_network(network, config)
engine = runtime.deserialize_cuda_engine(plan)
if engine is None:
print('Failed to create the engine')
return None
print("Completed creating the engine")
if save_engine:
with open(engine_file_path, "wb") as f:
f.write(plan)
return engine
# if os.path.exists(engine_file_path):
# # If a serialized engine exists, load it instead of building a new one.
# print("Reading engine from file {}".format(engine_file_path))
# with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
# return runtime.deserialize_cuda_engine(f.read())
# else:
return build_engine(max_batch_size, save_engine)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='TensorRT API and Plugin for MST++ Model, and get MST++ TRT Engine, support FP32, FP16 and INT8 mode !!!')
parser.add_argument('--mode', type= str , default='FP32', help='FP32, FP16 or INT8')
parser.add_argument('--calibration_table_path', type=str,default='./model/mst_calibration_onnxparser_b1.cache', help="INT8 calibration cache, invalid for FP32 and FP16")
parser.add_argument('--batch_size',type=int,default=1, help="Batch Size")
parser.add_argument('--plan_path', type=str,default='./model/mst_plus_plus_onnxparser_b1_int8.plan', help="TRT Engine save path")
parser.add_argument('--onnx_path', type=str,default='./model/mst_plus_plus_b1.onnx', help="ONNX path")
args = parser.parse_args()
mode = args.mode
batch_size = args.batch_size
calibration_table_path = args.calibration_table_path
plan_path = args.plan_path
onnx_path = args.onnx_path
if mode == "FP32":
get_engine(max_batch_size=batch_size, onnx_file_path=onnx_path, engine_file_path=plan_path,\
mode="FP32",save_engine=True)
if mode == "FP16":
get_engine(max_batch_size=batch_size, onnx_file_path=onnx_path, engine_file_path=plan_path,\
mode="FP16",save_engine=True)
if mode == "INT8":
from calibrator import *
calibration_stream = DataLoader(batch_size=batch_size)
assert calibration_stream, 'Error: a calibration_stream should be provided for int8 mode'
print('INT8 mode enabled')
get_engine(max_batch_size=batch_size, onnx_file_path=onnx_path, engine_file_path=plan_path,\
mode="INT8", calibration_stream=calibration_stream, calibration_table_path=calibration_table_path, save_engine=True)