Skip to content

Latest commit

 

History

History
4214 lines (3199 loc) · 116 KB

QMC.org

File metadata and controls

4214 lines (3199 loc) · 116 KB

Quantum Monte Carlo

1 Introduction

This website contains the QMC tutorial of the 2023 LTTC winter school Tutorials in Theoretical Chemistry.

We propose different exercises to understand quantum Monte Carlo (QMC) methods. In the first section, we start with the computation of the energy of a hydrogen atom using numerical integration. The goal of this section is to familiarize yourself with the concept of local energy. Then, we introduce the variational Monte Carlo (VMC) method which computes a statistical estimate of the expectation value of the energy associated with a given wave function, and apply this approach to the hydrogen atom. Finally, we present the diffusion Monte Carlo (DMC) method which we use here to estimate the exact energy of the hydrogen atom and of the H_2 molecule, starting from an approximate wave function.

Code examples will be given in Python3, C and Fortran. You can use whatever language you prefer to write the programs.

We consider the stationary solution of the Schrödinger equation, so the wave functions considered here are real: for an $N$ electron system where the electrons move in the 3-dimensional space, $Ψ : \mathbb{R}3N → \mathbb{R}$. In addition, $Ψ$ is defined everywhere, continuous, and infinitely differentiable.

All the quantities are expressed in atomic units (energies, coordinates, etc).

1.1 Energy and local energy

For a given system with Hamiltonian $\hat{H}$ and wave function $Ψ$, we define the local energy as

$$ E_L(\mathbf{r}) = \frac{\hat{H} Ψ(\mathbf{r})}{Ψ(\mathbf{r})}, $$

where $\mathbf{r}$ denotes the 3N-dimensional electronic coordinates.

The electronic energy of a system, $E$, can be rewritten in terms of the local energy $E_L(\mathbf{r})$ as

\begin{eqnarray*} E & = & \frac{\langle Ψ| \hat{H} | Ψ\rangle}{\langle Ψ |Ψ \rangle} = \frac{∫ Ψ(\mathbf{r})\, \hat{H} Ψ(\mathbf{r})\, d\mathbf{r}}{∫ |Ψ(\mathbf{r}) |^2 d\mathbf{r}}
& = & \frac{∫ |Ψ(\mathbf{r})|^2\, \frac{\hat{H} Ψ(\mathbf{r})}{Ψ(\mathbf{r})}\,d\mathbf{r}}{∫ |Ψ(\mathbf{r}) |^2 d\mathbf{r}} = \frac{∫ |Ψ(\mathbf{r})|^2\, E_L(\mathbf{r})\,d\mathbf{r}}{∫ |Ψ(\mathbf{r}) |^2 d\mathbf{r}} \end{eqnarray*}

For few dimensions, one can easily compute $E$ by evaluating the integrals on a grid but, for a high number of dimensions, one can resort to Monte Carlo techniques to compute $E$.

To this aim, recall that the probabilistic expected value of an arbitrary function $f(x)$ with respect to a probability density function $P(x)$ is given by

$$ \langle f \rangle_P = ∫-∞^∞ f(x)\, P(x) dx $$

where the probability density function $P(x)$ is non-negative and integrates to one:

$$ ∫-∞^∞ P(x)\,dx = 1. $$

Similarly, we can view the energy of a system, $E$, as the expected value of the local energy with respect to a probability density $P(\mathbf{r})$ defined in $3N$ dimensions:

$$ E = ∫ E_L(\mathbf{r})\, P(\mathbf{r})\,d\mathbf{r} ≡ \langle E_L \rangleP\,, $$

where the probability density is given by the square of the wave function:

$$ P(\mathbf{r}) = \frac{|Ψ(\mathbf{r})|^2}{∫ |Ψ(\mathbf{r})|^2 d\mathbf{r}}\,. $$

If we can sample $N\rm MC$ configurations $\{\mathbf{r}\}$ distributed as $P$, we can estimate $E$ as the average of the local energy computed over these configurations:

$$ E ≈ \frac{1}{N\rm MC} ∑i=1N_{\rm MC} E_L(\mathbf{r}_i) \,. $$

Here is an animation of the local energy in the N2 molecule along a QMC trajectory:

./n2.gif

2 Numerical evaluation of the energy of the hydrogen atom

In this section, we consider the hydrogen atom with the following wave function:

$$ Ψ(\mathbf{r}) = exp(-a |\mathbf{r}|) $$

We will first verify that, for a particular value of $a$, $Ψ$ is an eigenfunction of the Hamiltonian

$$ \hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} Δ - \frac{1}{|\mathbf{r}|} $$

To do that, we will compute the local energy and check whether it is constant.

2.1 Local energy

You will now program all quantities needed to compute the local energy of the Hydrogen atom for the given wave function.

Write all the functions of this section in a single file : hydrogen.py if you use Python, hydrogen.F90 if you use Fortran, or hydrogen.c and hydrogen.h if you use C.

2.1.1 Test-driven development

Test-driven development (TDD) is a software development process in which automated tests are written before the code they are testing. The tests are then run to ensure that the code is working as expected, and the developer continues to write code until all tests pass. The benefits of TDD include:

  • Early detection of bugs: By writing tests before the code, developers can identify and fix bugs early on in the development process, before the code becomes too complex to easily debug.
  • Improved code quality: Writing tests forces developers to think about the behavior and functionality of the code they are writing, leading to more robust and maintainable code.
  • Better documentation: Tests act as a form of documentation for the code, making it clear what the code is supposed to do and how it should behave.

2.1.2 Exercise 1

2.1.2.1 Python

#!/usr/bin/env python3
import numpy as np

def potential(r):
    # TODO

<<test_p>>

2.1.2.2 Fortran

If the extension of your file is .F90 and not .f90, the C preprocessor will be called before compiling. This enables the possibility to have conditional compilation with #ifdef statements, activated with the -D compiler option.

To compile your code and activate the test, use:

gfortran -DTEST_H hydrogen.F90 -o test_hydrogen
double precision function potential(r)
  implicit none
  double precision, intent(in) :: r(3)

  ! TODO

end function potential

<<test_f>>

2.1.2.3 C

Compile your code with the -DTEST_H option. It will activate the creation of the main function that will test your functions. Don’t forget to use -lm to link with the math library.

gcc -DTEST_H hydrogen.c -lm -o test_hydrogen
#include <stdio.h>   // printf
#include <math.h>    // sqrt
#include <stdlib.h>  // exit
#include <assert.h>  // assert

double potential(double r[3]) {
  // TODO
}

<<test_c>>

2.1.3 Solution

2.1.3.1 Python

#!/usr/bin/env python3
import numpy as np

def potential(r):
    distance = np.sqrt(np.dot(r,r))
    if distance == 0:
        print("potential at r=0 diverges")
        return -float("inf")
    return -1. / distance


<<test_p>>

2.1.3.2 Fortran

double precision function potential(r)
  implicit none
  double precision, intent(in) :: r(3)

  double precision             :: distance

  distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )

  if (distance > 0.d0) then
     potential = -1.d0 / distance
  else
     print *, 'Warning: potential at r=0.d0 diverges'
     potential = -huge(1.d0)
  end if

end function potential

<<test_f>>

2.1.3.3 C

#include <stdio.h>   // printf
#include <math.h>    // sqrt
#include <stdlib.h>  // exit
#include <assert.h>  // assert

double potential(double r[3]) {
  double distance;

  distance = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);

  if (distance > 0) {
    return -1.0 / distance;
  } else {
    printf("Warning: potential at r=0 diverges\n");
    return -HUGE_VAL;
  }
}

<<test_c>>

2.1.4 Exercise 2

2.1.4.1 Python

def psi(a, r):
    # TODO

2.1.4.2 Fortran

double precision function psi(a, r)
  implicit none
  double precision, intent(in) :: a, r(3)

  ! TODO

end function psi

2.1.4.3 C

double psi(double a, double r[3]) {
  // TODO
}

2.1.5 Solution

2.1.5.1 Python

def psi(a, r):
    return np.exp(-a*np.sqrt(np.dot(r,r)))

2.1.5.2 Fortran

double precision function psi(a, r)
  implicit none
  double precision, intent(in) :: a, r(3)

  psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function psi

2.1.5.3 C

double psi(double a, double r[3]) {
  double distance;

  distance = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);

  return exp(-a * distance);
}

2.1.6 Exercise 3

The local kinetic energy is defined as $$T_L(\mathbf{r}) = -\frac{1}{2}\frac{Δ Ψ(\mathbf{r})}{Ψ(\mathbf{r})}.$$

We differentiate $Ψ$ with respect to $x$:

\[ Ψ(\mathbf{r}) = exp(-a\,|\mathbf{r}|) \] \[\frac{∂ Ψ}{∂ x} = \frac{∂ Ψ}{∂ |\mathbf{r}|} \frac{∂ |\mathbf{r}|}{∂ x} = - \frac{a\,x}{|\mathbf{r}|} Ψ(\mathbf{r}) \]

and we differentiate a second time:

$$ \frac{∂^2 Ψ}{∂ x^2} = \left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|3} \right) Ψ(\mathbf{r}). $$

The Laplacian operator $Δ = \frac{∂^2}{∂ x^2} + \frac{∂^2}{∂ y^2} + \frac{∂^2}{∂ z^2}$ applied to the wave function gives:

$$ Δ Ψ (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) Ψ(\mathbf{r})\,. $$

Therefore, the local kinetic energy is $$ T_L (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) $$

2.1.6.1 Python

def kinetic(a,r):
    # TODO

2.1.6.2 Fortran

double precision function kinetic(a,r)
  implicit none
  double precision, intent(in) :: a, r(3)

  ! TODO

end function kinetic

2.1.6.3 C

double kinetic(double a, double r[3]) {
  //TODO
}

2.1.7 Solution

2.1.7.1 Python

def kinetic(a,r):
    distance = np.sqrt(np.dot(r,r))
    if distance > 0:
        dinv = 1./distance 
    else:
        print ('Warning: kinetic energy diverges at r=0')
        dinv = float("inf") 
    return a * (dinv - 0.5 * a)

2.1.7.2 Fortran

double precision function kinetic(a,r)
  implicit none
  double precision, intent(in) :: a, r(3)

  double precision             :: distance

  distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) 

  if (distance > 0.d0) then
     kinetic =  a * (1.d0 / distance - 0.5d0 * a)
  else
     print *, 'Warning: kinetic energy diverges at r=0'
     kinetic =  a * (huge(1.d0) - 0.5d0 * a)
  end if

end function kinetic

2.1.7.3 C

double kinetic(double a, double r[3]) {
  double distance;

  distance = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);

  if (distance > 0) {
    return a * (1.0 / distance - 0.5 * a);
  } else {
    printf("Warning: kinetic energy diverges at r=0\n");
    return a * (HUGE_VAL - 0.5 * a);
  }
}

2.1.8 Exercise 4

$$ E_L(\mathbf{r}) = -\frac{1}{2} \frac{Δ Ψ}{Ψ} (\mathbf{r}) + V(\mathbf{r}) $$

2.1.8.1 Python

def e_loc(a,r):
    #TODO

2.1.8.2 Fortran

double precision function e_loc(a,r)
  implicit none
  double precision, intent(in) :: a, r(3)

  double precision, external :: kinetic
  double precision, external :: potential

  ! TODO

end function e_loc

2.1.8.3 C

double e_loc(double a, double r[3]) {
  // TODO
}

2.1.9 Solution

2.1.9.1 Python

def e_loc(a,r):
    return kinetic(a,r) + potential(r)

2.1.9.2 Fortran

double precision function e_loc(a,r)
  implicit none
  double precision, intent(in) :: a, r(3)

  double precision, external :: kinetic
  double precision, external :: potential

  e_loc = kinetic(a,r) + potential(r)

end function e_loc

2.1.9.3 C

double e_loc(double a, double r[3]) {
  return kinetic(a, r) + potential(r);
}

2.1.10 Exercise 5

2.1.11 Solution

\begin{eqnarray*} E &=& \frac{\hat{H} Ψ}{Ψ} = - \frac{1}{2} \frac{Δ Ψ}{Ψ} - \frac{1}{|\mathbf{r}|}
&=& -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) - \frac{1}{|\mathbf{r}|} \ &=& -\frac{1}{2} a^2 + \frac{a-1}{\mathbf{|r|}} \end{eqnarray*}

$a=1$ cancels the $1/|r|$ term, and makes the energy constant and equal to -0.5 atomic units.

2.2 Plot of the local energy along the $x$ axis

The program you will write in this section will be written in another file (plot_hydrogen.py, plot_hydrogen.F90 or plot_hydrogen.c for example). It will use the functions previously defined. If you use C, don’t forget to write the header file corresponding to the functions defined in the previous section.

In Python, you should put at the beginning of the file

#!/usr/bin/env python3

from hydrogen import e_loc

to be able to use the e_loc function of the hydrogen.py file.

In Fortran, you will need to compile all the source files together:

gfortran hydrogen.F90 plot_hydrogen.F90 -o plot_hydrogen

Similarly, in C

gcc hydrogen.c plot_hydrogen.c -lm -o plot_hydrogen

2.2.1 Exercise

2.2.1.1 Python

#!/usr/bin/env python3

import numpy as np
import matplotlib.pyplot as plt

from hydrogen import e_loc

x=np.linspace(-5,5)
plt.figure(figsize=(10,5))

# TODO

plt.tight_layout()
plt.legend()
plt.savefig("plot_py.png")

2.2.1.2 Fortran

program plot
  implicit none
  double precision, external :: e_loc

  double precision :: x(50), dx
  integer :: i, j

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  ! TODO

end program plot

To compile and run:

gfortran hydrogen.F90 plot_hydrogen.F90 -o plot_hydrogen
./plot_hydrogen > data

2.2.1.3 C

#include <stdio.h>
#include <math.h>
#include "hydrogen.h"

#define NPOINTS  50
#define NEXPO     6

int main() {

    double x[NPOINTS], energy, dx, r[3];
    double a[NEXPO] = { 0.1, 0.2, 0.5, 1.0, 1.5, 2.0 };
    int i, j;

    dx = 10.0/(NPOINTS-1);
    for (i = 0; i < NPOINTS; i++) {
        x[i] = -5.0 + i*dx;
    }

    // TODO
    return 0;
}

To compile and run:

gcc hydrogen.c plot_hydrogen.c -lm -o plot_hydrogen
./plot_hydrogen > data

Plotting for Fortran of C

Plot the data using Gnuplot:

set grid
set xrange [-5:5]
set yrange [-2:1]
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
     './data' index 1 using 1:2 with lines title 'a=0.2', \
     './data' index 2 using 1:2 with lines title 'a=0.5', \
     './data' index 3 using 1:2 with lines title 'a=1.0', \
     './data' index 4 using 1:2 with lines title 'a=1.5', \
     './data' index 5 using 1:2 with lines title 'a=2.0'

2.2.2 Solution

2.2.2.1 Python

#!/usr/bin/env python3

import numpy as np
import matplotlib.pyplot as plt

from hydrogen import e_loc

x=np.linspace(-5,5)
plt.figure(figsize=(10,5))

for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
  y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
  plt.plot(x,y,label=f"a={a}")
  
plt.tight_layout()
plt.legend()
plt.savefig("plot_py.png")

./plot_py.png

2.2.2.2 Fortran

program plot
  implicit none
  double precision, external :: e_loc

  double precision :: x(50), energy, dx, r(3), a(6)
  integer :: i, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  r(:) = 0.d0

  do j=1,size(a)
     print *, '# a=', a(j)
     do i=1,size(x)
        r(1) = x(i)
        energy = e_loc( a(j), r )
        print *, x(i), energy
     end do
     print *, ''
     print *, ''
  end do

end program plot

2.2.2.3 C

double potential (double r[3]);
double psi       (double a, double r[3]);
double kinetic   (double a, double r[3]);
double e_loc     (double a, double r[3]);
#include <stdio.h>
#include <math.h>
#include "hydrogen.h"

#define NPOINTS  50
#define NEXPO     6

int main() {

    double x[NPOINTS], energy, dx, r[3];
    double a[NEXPO] = { 0.1, 0.2, 0.5, 1.0, 1.5, 2.0 };
    int i, j;

    dx = 10.0/(NPOINTS-1);
    for (i = 0; i < NPOINTS; i++) {
        x[i] = -5.0 + i*dx;
    }

    for (i = 0; i < 3; i++) {
        r[i] = 0.0;
    }

    for (j = 0; j < NEXPO; j++) {
        printf("# a=%f\n", a[j]);
        for (i = 0; i < NPOINTS; i++) {
            r[0] = x[i];
            energy = e_loc(a[j], r);
            printf("%f %f\n", x[i], energy);
        }
        printf("\n\n");
    }
    return 0;
}

plot.png

2.3 Numerical estimation of the energy

If the space is discretized in small volume elements $\mathbf{r}_i$ of size $δ \mathbf{r}$, the expression of $\langle E_L \rangleΨ^2$ becomes a weighted average of the local energy, where the weights are the values of the square of the wave function at $\mathbf{r}_i$ multiplied by the volume element:

$$ \langle E \rangleΨ^2 ≈ \frac{∑_i w_i E_L(\mathbf{r}_i)}{∑_i w_i}, \;\; w_i = \left|Ψ(\mathbf{r}_i)\right|^2 δ \mathbf{r} $$

2.3.1 Exercise

2.3.1.1 Python

#!/usr/bin/env python3

import numpy as np
from hydrogen import e_loc, psi

interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3

r = np.array([0.,0.,0.])

for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
    # TODO
    print(f"a = {a} \t E = {E}")                

2.3.1.2 Fortran

program energy_hydrogen
  implicit none
  double precision, external :: e_loc, psi
  double precision :: x(50), w, delta, energy, dx, r(3), a(6), normalization
  integer :: i, k, l, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  do j=1,size(a)

     ! TODO

     print *, 'a = ', a(j), '    E = ', energy
  end do

end program energy_hydrogen

To compile the Fortran code and run it:

gfortran hydrogen.F90 energy_hydrogen.F90 -o energy_hydrogen
./energy_hydrogen 

2.3.1.3 C

#include <stdio.h>
#include <math.h>
#include "hydrogen.h"

#define NPOINTS  50
#define NEXPO     6

int main() {

    double x[NPOINTS], energy, dx, r[3], delta, normalization, w;
    double a[NEXPO] = { 0.1, 0.2, 0.5, 1.0, 1.5, 2.0 };

    dx = 10.0/(NPOINTS-1);
    for (int i = 0; i < NPOINTS; i++) {
        x[i] = -5.0 + i*dx;
    }

    for (int j = 0; j < NEXPO; j++) {
        // TODO
        printf("a = %f    E = %f\n", a[j], energy);
    }
}

To compile the C code and run it:

gcc hydrogen.c energy_hydrogen.c -lm -o energy_hydrogen
./energy_hydrogen 

Hints if you are stuck

The program starts by defining some variables and arrays, including an array a that contains 6 different values of the parameter a which will be used in the e_loc and psi functions to calculate the local energy and wave function respectively.

The program then calculates the value of dx, which is the step size in $x$, and sets up an array x that contains 50 equally spaced points between -5 and 5. The program sets all elements of the r array to 0, and then enters a nested loop structure. The outer loop iterates over the values of a in the a array, and the next three loops iterate over the values of x in the x array for the three dimensions. For each value of a and x, the program sets the first element of the r array to the current value of x, calls the psi function to calculate the wave function, calls the e_loc function to calculate the local energy, and then accumulates the energy and the normalization factor.

At the end of the outer loop, the program calculates the final energy by dividing the accumulated energy by the accumulated normalization factor, and prints the value of a and the corresponding energy.

2.3.2 Solution

2.3.2.1 Python

#!/usr/bin/env python3

import numpy as np
from hydrogen import e_loc, psi

interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3

r = np.array([0.,0.,0.])

for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
    E    = 0.
    normalization = 0.

    for x in interval:
        r[0] = x
        for y in interval:
            r[1] = y
            for z in interval:
                r[2] = z

                w = psi(a,r)
                w = w * w * delta

                E    += w * e_loc(a,r)
                normalization += w 

    E = E / normalization
    print(f"a = {a} \t E = {E}")                
a = 0.1 	 E = -0.24518438948809218
a = 0.2 	 E = -0.26966057967803525
a = 0.5 	 E = -0.3856357612517407
a = 0.9 	 E = -0.49435709786716214
a = 1.0 	 E = -0.5
a = 1.5 	 E = -0.39242967082602226
a = 2.0 	 E = -0.08086980667844901

2.3.2.2 Fortran

program energy_hydrogen
  implicit none
  double precision, external :: e_loc, psi
  double precision :: x(50), w, delta, energy, dx, r(3), a(6), normalization
  integer          :: i, k, l, j

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  delta = dx**3

  r(:) = 0.d0

  do j=1,size(a)
     energy = 0.d0
     normalization = 0.d0
     
     do i=1,size(x)
        r(1) = x(i)

        do k=1,size(x)
           r(2) = x(k)

           do l=1,size(x)
              r(3) = x(l)

              w = psi(a(j),r)
              w = w * w * delta

              energy = energy + w * e_loc(a(j), r)
              normalization = normalization + w 
           end do

        end do

     end do

     energy = energy / normalization
     print *, 'a = ', a(j), '    E = ', energy
  end do

end program energy_hydrogen
 a =   0.10000000000000001          E =  -0.24518438948809140     
 a =   0.20000000000000001          E =  -0.26966057967803236     
 a =   0.50000000000000000          E =  -0.38563576125173815     
 a =    1.0000000000000000          E =  -0.50000000000000000     
 a =    1.5000000000000000          E =  -0.39242967082602065     
 a =    2.0000000000000000          E =   -8.0869806678448772E-002

2.3.2.3 C

#include <stdio.h>
#include <math.h>
#include "hydrogen.h"

#define NPOINTS  50
#define NEXPO     6

int main() {

    double x[NPOINTS], energy, dx, r[3], delta, normalization, w;
    double a[NEXPO] = { 0.1, 0.2, 0.5, 1.0, 1.5, 2.0 };

    dx = 10.0/(NPOINTS-1);
    for (int i = 0; i < NPOINTS; i++) {
        x[i] = -5.0 + i*dx;
    }

    delta = dx*dx*dx;
    for (int i = 0; i < 3; i++) {
        r[i] = 0.0;
    }

    for (int j = 0; j < NEXPO; j++) {
        energy = 0.0;
        normalization = 0.0;

        for (int i = 0; i < NPOINTS; i++) {
            r[0] = x[i];

            for (int k = 0; k < NPOINTS; k++) {
                r[1] = x[k];

                for (int l = 0; l < NPOINTS; l++) {
                    r[2] = x[l];

                    w = psi(a[j], r);
                    w = w*w*delta;

                    energy += w*e_loc(a[j], r);
                    normalization += w;
                }
            }
        }
        energy = energy/normalization;
        printf("a = %f    E = %f\n", a[j], energy);
    }
}
a = 0.100000    E = -0.245184
a = 0.200000    E = -0.269661
a = 0.500000    E = -0.385636
a = 1.000000    E = -0.500000
a = 1.500000    E = -0.392430
a = 2.000000    E = -0.080870

2.4 Variance of the local energy

The variance of the local energy is a functional of $Ψ$ which measures the magnitude of the fluctuations of the local energy associated with $Ψ$ around its average:

$$ σ^2(E_L) = \frac{∫ |Ψ(\mathbf{r})|^2\, \left[ E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{∫ |Ψ(\mathbf{r}) |^2 d\mathbf{r}} $$ which can be simplified as

$$ σ^2(E_L) = \langle E_L^2 \rangleΨ^2 - \langle E_L \rangleΨ^2^2.$$

If the local energy is constant (i.e. $Ψ$ is an eigenfunction of $\hat{H}$) the variance is zero, so the variance of the local energy can be used as a measure of the quality of a wave function.

2.4.1 Exercise (optional)

2.4.2 Solution

$\bar{E} = \langle E \rangle$ is a constant, so $\langle \bar{E} \rangle = \bar{E}$ .

\begin{eqnarray*} \langle (E - \bar{E})^2 \rangle & = & \langle E^2 - 2 E \bar{E} + \bar{E}^2 \rangle
&=& \langle E^2 \rangle - 2 \langle E \bar{E} \rangle + \langle \bar{E}^2 \rangle \ &=& \langle E^2 \rangle - 2 \langle E \rangle \bar{E} + \bar{E}^2 \ &=& \langle E^2 \rangle - 2 \bar{E}^2 + \bar{E}^2 \ &=& \langle E^2 \rangle - \bar{E}^2 \ &=& \langle E^2 \rangle - \langle E \rangle^2 \ \end{eqnarray*}

2.4.3 Exercise

2.4.3.1 Python

#!/usr/bin/env python3

import numpy as np from hydrogen import e_loc, psi

interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])

for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
    # TODO
    print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")

2.4.3.2 Fortran

program variance_hydrogen
  implicit none

  double precision :: x(50), w, delta, energy, energy2
  double precision :: dx, r(3), a(6), normalization, e_tmp, s2
  integer          :: i, k, l, j

  double precision, external :: e_loc, psi

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  do j=1,size(a)

     ! TODO

     print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
  end do

end program variance_hydrogen

To compile and run:

gfortran hydrogen.F90 variance_hydrogen.F90 -o variance_hydrogen
./variance_hydrogen

2.4.3.3 C

#include <stdio.h>
#include <math.h>
#include "hydrogen.h"

#define NPOINTS  50
#define NEXPO     6

int main() {

    double x[NPOINTS], energy, dx, r[3], delta, normalization, w;
    double a[NEXPO] = { 0.1, 0.2, 0.5, 1.0, 1.5, 2.0 };
    double energy2, e_tmp, s2;

    dx = 10.0/(NPOINTS-1);
    for (int i = 0; i < NPOINTS; i++) {
        x[i] = -5.0 + i*dx;
    }

    for (int j = 0; j < NEXPO; j++) {
        // TODO
        printf("a = %f    E = %f    s2 = %f\n", a[j], energy, s2);
    }
}

To compile and run:

gcc hydrogen.c variance_hydrogen.c -lm -o variance_hydrogen
./variance_hydrogen

2.4.4 Solution

2.4.4.1 Python

#!/usr/bin/env python3

import numpy as np
from hydrogen import e_loc, psi

interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])

for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
    E    = 0.
    E2   = 0.
    normalization = 0.

    for x in interval:
        r[0] = x

        for y in interval:
            r[1] = y

            for z in interval:
                r[2] = z

                w = psi(a,r)
                w = w * w * delta

                e_tmp = e_loc(a,r)
                E    += w * e_tmp
                E2   += w * e_tmp * e_tmp
                normalization += w 

    E  = E  / normalization
    E2 = E2 / normalization

    s2 = E2 - E**2
    print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
a = 0.1 	 E = -0.24518439 	 \sigma^2 = 0.02696522
a = 0.2 	 E = -0.26966058 	 \sigma^2 = 0.03719707
a = 0.5 	 E = -0.38563576 	 \sigma^2 = 0.05318597
a = 0.9 	 E = -0.49435710 	 \sigma^2 = 0.00577812
a = 1.0 	 E = -0.50000000 	 \sigma^2 = 0.00000000
a = 1.5 	 E = -0.39242967 	 \sigma^2 = 0.31449671
a = 2.0 	 E = -0.08086981 	 \sigma^2 = 1.80688143

2.4.4.2 Fortran

program variance_hydrogen
  implicit none

  double precision :: x(50), w, delta, energy, energy2
  double precision :: dx, r(3), a(6), normalization, e_tmp, s2
  integer          :: i, k, l, j

  double precision, external :: e_loc, psi

  a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)

  dx = 10.d0/(size(x)-1)
  do i=1,size(x)
     x(i) = -5.d0 + (i-1)*dx
  end do

  delta = dx**3

  r(:) = 0.d0

  do j=1,size(a)
     energy  = 0.d0
     energy2 = 0.d0
     normalization = 0.d0

     do i=1,size(x)
        r(1) = x(i)

        do k=1,size(x)
           r(2) = x(k)

           do l=1,size(x)
              r(3) = x(l)

              w = psi(a(j),r)
              w = w * w * delta

              e_tmp = e_loc(a(j), r)

              energy  = energy  + w * e_tmp
              energy2 = energy2 + w * e_tmp * e_tmp
              normalization = normalization + w 
           end do

        end do

     end do

     energy  = energy  / normalization
     energy2 = energy2 / normalization

     s2 = energy2 - energy*energy

     print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2
  end do

end program variance_hydrogen
 a =   0.10000000000000001       E =  -0.24518438948809140       s2 =    2.6965218719722767E-002
 a =   0.20000000000000001       E =  -0.26966057967803236       s2 =    3.7197072370201284E-002
 a =   0.50000000000000000       E =  -0.38563576125173815       s2 =    5.3185967578480653E-002
 a =    1.0000000000000000       E =  -0.50000000000000000       s2 =    0.0000000000000000     
 a =    1.5000000000000000       E =  -0.39242967082602065       s2 =   0.31449670909172917     
 a =    2.0000000000000000       E =   -8.0869806678448772E-002  s2 =    1.8068814270846534     

2.4.4.3 C

#include <stdio.h>
#include <math.h>
#include "hydrogen.h"

#define NPOINTS  50
#define NEXPO     6

int main() {

    double x[NPOINTS], energy, dx, r[3], delta, normalization, w;
    double a[NEXPO] = { 0.1, 0.2, 0.5, 1.0, 1.5, 2.0 };
    double energy2, e_tmp, s2;

    dx = 10.0/(NPOINTS-1);
    for (int i = 0; i < NPOINTS; i++) {
        x[i] = -5.0 + i*dx;
    }

    delta = dx*dx*dx;
    for (int i = 0; i < 3; i++) {
        r[i] = 0.0;
    }

    for (int j = 0; j < NEXPO; j++) {
        energy  = 0.0;
        energy2 = 0.0;
        normalization = 0.0;

        for (int i = 0; i < NPOINTS; i++) {
            r[0] = x[i];

            for (int k = 0; k < NPOINTS; k++) {
                r[1] = x[k];

                for (int l = 0; l < NPOINTS; l++) {
                    r[2] = x[l];

                    w = psi(a[j], r);
                    w = w*w*delta;

                    e_tmp = e_loc(a[j], r);

                    energy  += w * e_tmp;
                    energy2 += w * e_tmp * e_tmp;
                    normalization += w;
                }
            }
        }
        energy  = energy/normalization;
        energy2 = energy2/normalization;
        s2 = energy2 - energy*energy;
        printf("a = %f    E = %f    s2 = %f\n", a[j], energy, s2);
    }
}
gcc hydrogen.c variance_hydrogen.c -lm -o variance_hydrogen
./variance_hydrogen
a = 0.100000    E = -0.245184    s2 = 0.026965
a = 0.200000    E = -0.269661    s2 = 0.037197
a = 0.500000    E = -0.385636    s2 = 0.053186
a = 1.000000    E = -0.500000    s2 = 0.000000
a = 1.500000    E = -0.392430    s2 = 0.314497
a = 2.000000    E = -0.080870    s2 = 1.806881

3 Variational Monte Carlo

Numerical integration with deterministic methods is very efficient in low dimensions. When the number of dimensions becomes large, instead of computing the average energy as a numerical integration on a grid, it is usually more efficient to use Monte Carlo sampling.

Moreover, Monte Carlo sampling will allow us to remove the bias due to the discretization of space, and compute a statistical confidence interval.

3.1 Computation of the statistical error

To compute the statistical error, you need to perform $M$ independent Monte Carlo calculations. You will obtain $M$ different estimates of the energy, which are expected to have a Gaussian distribution for large $M$, according to the Central Limit Theorem.

The estimate of the energy is

$$ E = \frac{1}{M} ∑i=1^M E_i $$

The variance of the average energies can be computed as

$$ σ^2 = \frac{1}{M-1} ∑i=1M (E_i - E)^2 $$

And the confidence interval is given by

$$ E ± δ E, \text{ where } δ E = \frac{σ}{\sqrt{M}} $$

3.1.1 Exercise

3.1.1.1 Python

#!/usr/bin/env python3

from math import sqrt
def ave_error(arr):
    #TODO
    return (average, error)

3.1.1.2 Fortran

subroutine ave_error(x,n,ave,err)
  implicit none
  integer, intent(in)           :: n 
  double precision, intent(in)  :: x(n) 
  double precision, intent(out) :: ave, err

  ! TODO

end subroutine ave_error

3.1.1.3 C

#include <stdio.h>
#include <math.h>
#include <stddef.h> // for size_t

void ave_error(double* x, size_t n, double *ave, double *err) {
   // TODO
}

Hints if you are stuck

Write a subroutine called ave_error that calculates the average and error of a given array of real numbers. The subroutine takes in three arguments: an array x of real numbers, an integer n representing the size of the array, and two output arguments ave and err representing the average and error of the array, respectively.

The subroutine starts by checking if the input integer n is less than 1. If it is, the subroutine stops and prints an error message. If n is equal to 1, the subroutine sets the average to the first element of the array and the error to zero. If n is greater than 1, the subroutine calculates the average of the array by dividing the sum of the elements by the number of elements in the array. Then it calculates the variance of the array by taking the sum of the square of the difference between each element and the average and dividing by n-1. Finally, it calculates the error by taking the square root of the variance divided by n.

3.1.2 Solution

3.1.2.1 Python

#!/usr/bin/env python3

from math import sqrt
def ave_error(arr):
    M = len(arr)
    assert(M>0)

    if M == 1:
        average = arr[0]
        error   = 0.

    else:
        average = sum(arr)/M
        variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
        error = sqrt(variance/M)

    return (average, error)

3.1.2.2 Fortran

subroutine ave_error(x,n,ave,err)
  implicit none

  integer, intent(in)           :: n 
  double precision, intent(in)  :: x(n) 
  double precision, intent(out) :: ave, err

  double precision              :: variance

  if (n < 1) then
     stop 'n<1 in ave_error'

  else if (n == 1) then
     ave = x(1)
     err = 0.d0

  else
     ave      = sum(x(:)) / dble(n)

     variance = sum((x(:) - ave)**2) / dble(n-1)
     err      = dsqrt(variance/dble(n))

  endif
end subroutine ave_error

3.1.2.3 C

#include <stddef.h> // for size_t
void ave_error(double* x, size_t n, double *ave, double *err);
#include <stdio.h>
#include <math.h>
#include <stddef.h> // for size_t

void ave_error(double* x, size_t n, double *ave, double *err) {
  double variance;

  if (n < 1) {
    printf("n<1 in ave_error\n");
    return;
  } else if (n == 1) {
    *ave = x[0];
    *err = 0.0;
  } else {
    double sum = 0.0;
    for (int i = 0; i < n; i++) {
      sum += x[i];
    }
    *ave = sum / (double)n;

    variance = 0.0;
    for (int i = 0; i < n; i++) {
      double x2 = x[i] - *ave;
      variance += x2*x2;
    }
    variance = variance / (double)(n - 1);
    *err = sqrt(variance / (double)n);
  }
}

3.2 Uniform sampling in the box

We will now perform our first Monte Carlo calculation to compute the energy of the hydrogen atom.

Consider again the expression of the energy

\begin{eqnarray*} E & = & \frac{∫ E_L(\mathbf{r})|Ψ(\mathbf{r})|^2\,d\mathbf{r}}{∫ |Ψ(\mathbf{r}) |^2 d\mathbf{r}}\,. \end{eqnarray*}

Clearly, the square of the wave function is a good choice of probability density to sample but we will start with something simpler and rewrite the energy as

\begin{eqnarray*} E & = & \frac{∫ E_L(\mathbf{r})\frac{|Ψ(\mathbf{r})|^2}{P(\mathbf{r})}P(\mathbf{r})\, \,d\mathbf{r}}{∫ \frac{|Ψ(\mathbf{r})|^2 }{P(\mathbf{r})}P(\mathbf{r})d\mathbf{r}}\,. \end{eqnarray*}

Here, we will sample a uniform probability $P(\mathbf{r})$ in a cube of volume $L^3$ centered at the origin:

$$ P(\mathbf{r}) = \frac{1}{L^3}\,, $$

and zero outside the cube.

One Monte Carlo run will consist of $N\rm MC$ Monte Carlo iterations. At every Monte Carlo iteration:

  • Draw a random point $\mathbf{r}_i$ in the box $(-5,-5,-5) ≤ (x,y,z) ≤ (5,5,5)$
  • Compute $|Ψ(\mathbf{r}_i)|^2$ and accumulate the result in a variable normalization
  • Compute $|Ψ(\mathbf{r}_i)|^2 × E_L(\mathbf{r}_i)$, and accumulate the result in a variable energy

Once all the iterations have been computed, the run returns the average energy $\bar{E}_k$ over the $N\rm MC$ iterations of the run.

To compute the statistical error, perform $M$ independent runs. The final estimate of the energy will be the average over the $\bar{E}_k$, and the variance of the $\bar{E}_k$ will be used to compute the statistical error.

3.2.1 Exercise

3.2.1.1 Python

#!/usr/bin/env python3

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a, nmax):
     # TODO

a    = 1.2
nmax = 100000

#TODO

print(f"E = {E} +/- {deltaE}")

3.2.1.2 Fortran

subroutine uniform_montecarlo(a,nmax,energy)
  implicit none
  double precision, intent(in)  :: a
  integer         , intent(in)  :: nmax 
  double precision, intent(out) :: energy

  integer          :: istep
  double precision :: normalization, r(3), w

  double precision, external :: e_loc, psi

  ! TODO
end subroutine uniform_montecarlo

program qmc
  implicit none
  double precision, parameter :: a = 1.2d0
  integer         , parameter :: nmax = 100000
  integer         , parameter :: nruns = 30

  integer          :: irun
  double precision :: X(nruns)
  double precision :: ave, err

  !TODO

  print *, 'E = ', ave, '+/-', err

end program qmc
gfortran hydrogen.F90 qmc_stats.F90 qmc_uniform.F90 -o qmc_uniform
./qmc_uniform

3.2.1.3 C

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <stddef.h>  // for size_t
#include <time.h>
#include "hydrogen.h"
#include "qmc_stats.h"   // for ave_error

void uniform_montecarlo(double a, size_t nmax, double *energy) {
    // TODO
}

int main(void) {

#define a     1.2
#define nmax  100000
#define nruns 30

    srand48(time(NULL));

    // TODO
  
    printf("E = %f +/- %f\n", ave, err);

    return 0;
}

Hints if you are stuck

Write first a subroutine called uniform_montecarlo that calculates the energy of the Hydrogen atom using the Monte Carlo method with a uniform distribution. The subroutine takes in three arguments: a real number a, an integer nmax representing the number of Monte Carlo steps, and an output argument energy representing the calculated energy.

The subroutine starts by initializing the energy and normalization factor to 0 and defines some variables such as istep, normalization, r and w. The subroutine also makes use of two external functions: e_loc and psi which were defined in previous examples.

The subroutine then enters a loop that iterates for nmax times. On each iteration, the subroutine generates three random numbers between 0 and 1, and then uses these random numbers to calculate a random point in 3D space between -5 and 5. The subroutine then calls the psi function to calculate the wave function at that point and the e_loc function to calculate the local energy at that point. The subroutine then accumulates the energy and normalization factor using the generated point and the results of the psi and e_loc functions.

At the end of the loop, the subroutine calculates the final energy by dividing the accumulated energy by the accumulated normalization factor.

Then, write a Fortran program called qmc that uses the uniform_montecarlo subroutine to estimate the energy of the Hydrogen atom using the Monte Carlo method. The program starts by defining some parameters: a, nmax, and nruns.

The program then defines a variable irun which is used as a counter in a loop, an array X of length nruns to store the energies calculated by the uniform_montecarlo subroutine, and variables ave and err to store the average and error of the energies, respectively.

The program then enters a loop that iterates for nruns times. On each iteration, the program calls the uniform_montecarlo subroutine to calculate the energy of the Hydrogen atom and stores the result in the X array.

After the loop, the program calls the ave_error subroutine to calculate the average and error of the energies stored in the X array and assigns the results to ave and err variables respectively.

Finally, the program prints the average and error of the energies.

3.2.2 Solution

3.2.2.1 Python

#!/usr/bin/env python3

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a, nmax):
     energy = 0.
     normalization = 0.

     for istep in range(nmax):
          r = np.random.uniform(-5., 5., (3))

          f = psi(a,r)
          w = f*f

          energy        += w * e_loc(a,r)
          normalization += w

     return energy / normalization

a    = 1.2
nmax = 100000

X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)

print(f"E = {E} +/- {deltaE}")
E = -0.4793311279357434 +/- 0.002563797463053474

3.2.2.2 Fortran

subroutine uniform_montecarlo(a,nmax,energy)
  implicit none
  double precision, intent(in)  :: a
  integer*8       , intent(in)  :: nmax 
  double precision, intent(out) :: energy

  integer*8        :: istep
  double precision :: normalization, r(3), w, f

  double precision, external :: e_loc, psi

  energy = 0.d0
  normalization = 0.d0

  do istep = 1,nmax

     call random_number(r)
     r(:) = -5.d0 + 10.d0*r(:)

     f = psi(a,r)
     w = f*f

     energy = energy + w * e_loc(a,r)
     normalization = normalization + w

  end do

  energy = energy / normalization

end subroutine uniform_montecarlo

program qmc
  implicit none
  double precision, parameter :: a     = 1.2d0
  integer*8       , parameter :: nmax  = 100000
  integer         , parameter :: nruns = 30

  integer          :: irun
  double precision :: X(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call uniform_montecarlo(a, nmax, X(irun))
  enddo

  call ave_error(X, nruns, ave, err)

  print *, 'E = ', ave, '+/-', err
end program qmc
 E =  -0.47958062416368030      +/-   3.1460315707685389E-003

3.2.2.3 C

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <time.h>
#include <stddef.h>  // for size_t
#include "hydrogen.h"
#include "qmc_stats.h"   // for ave_error

void uniform_montecarlo(double a, size_t nmax, double *energy) {
    size_t istep;
    double normalization, r[3], w, f;

    *energy = 0.0;
    normalization = 0.0;

    for (istep = 0; istep < nmax; istep++) {
        for (int i = 0; i < 3; i++) {
            r[i] = drand48();
        }

        r[0] = -5.0 + 10.0 * r[0];
        r[1] = -5.0 + 10.0 * r[1];
        r[2] = -5.0 + 10.0 * r[2];
        f = psi(a, r);
        w = f*f;
        *energy += w * e_loc(a, r);
        normalization += w;
    }
    *energy = *energy / normalization;
}

int main(void) {

#define a     1.2
#define nmax  100000
#define nruns 30

    double X[nruns];
    double ave, err;

    srand48(time(NULL));

    for (size_t irun = 0; irun < nruns; irun++) {
        uniform_montecarlo(a, nmax, &X[irun]);
    }
    ave_error(X, nruns, &ave, &err);

    printf("E = %f +/- %f\n", ave, err);

    return 0;
}
E = -0.479507 +/- 0.001972

3.3 Metropolis sampling with Ψ^2

We will now use the square of the wave function to sample random points distributed with the probability density \[ P(\mathbf{r}) = \frac{|Ψ(\mathbf{r})|^2}{∫ |Ψ(\mathbf{r})|^2 d\mathbf{r}}\,. \]

The expression of the average energy is now simplified as the average of the local energies, since the weights are taken care of by the sampling:

$$ E ≈ \frac{1}{N\rm MC}∑i=1N_{\rm MC} E_L(\mathbf{r}_i)\,. $$

To sample a chosen probability density, an efficient method is the Metropolis-Hastings sampling algorithm. Starting from a random initial position $\mathbf{r}_0$, we will realize a random walk:

$$ \mathbf{r}_0 → \mathbf{r}_1 → \mathbf{r}_2 \ldots → \mathbf{r}N_{\rm MC}\,, $$

according to the following algorithm.

At every step, we propose a new move according to a transition probability $T(\mathbf{r}n→\mathbf{r}n+1)$ of our choice.

For simplicity, we will move the electron in a 3-dimensional box of side $2δ L$ centered at the current position of the electron:

$$ \mathbf{r}n+1 = \mathbf{r}n + δ L \, \mathbf{u} $$

where $δ L$ is a fixed constant, and $\mathbf{u}$ is a uniform random number in a 3-dimensional box $(-1,-1,-1) ≤ \mathbf{u} ≤ (1,1,1)$.

After having moved the electron, we add the accept/reject step that guarantees that the distribution of the $\mathbf{r}_n$ is $Ψ^2$. This amounts to accepting the move with probability

$$ A(\mathbf{r}n→\mathbf{r}n+1) = min\left(1,\frac{T(\mathbf{r}n+1→\mathbf{r}n) P(\mathbf{r}n+1)}{T(\mathbf{r}n→\mathbf{r}n+1)P(\mathbf{r}n)}\right)\,, $$

which, for our choice of transition probability, becomes

$$ A(\mathbf{r}n→\mathbf{r}n+1) = min\left(1,\frac{P(\mathbf{r}n+1)}{P(\mathbf{r}n)}\right)= min\left(1,\frac{|Ψ(\mathbf{r}n+1)|^2}{|Ψ(\mathbf{r}n)|^2}\right)\,. $$

Also note that we do not need to compute the norm of the wave function!

The algorithm is summarized as follows:

  1. Evaluate the local energy at $\mathbf{r}_n$ and add it to an accumulator
  2. Compute a new position $\mathbf{r’} = \mathbf{r}_n + δ L\, \mathbf{u}$
  3. Evaluate $Ψ(\mathbf{r}’)$ at the new position
  4. Compute the ratio $A = \frac{\left|Ψ(\mathbf{r’})\right|^2}{\left|Ψ(\mathbf{r}n)\right|^2}$
  5. Draw a uniform random number $v ∈ [0,1]$
  6. if $v ≤ A$, accept the move : set $\mathbf{r}n+1 = \mathbf{r’}$
  7. else, reject the move : set $\mathbf{r}n+1 = \mathbf{r}_n$

3.3.1 Optimal step size

If the box is infinitely small, the ratio will be very close to one and all the steps will be accepted. However, the moves will be very correlated and you will explore the configurational space very slowly.

On the other hand, if you propose too large moves, the number of accepted steps will decrease because the ratios might become small. If the number of accepted steps is close to zero, then the space is not well sampled either.

The size of the move should be adjusted so that it is as large as possible, keeping the number of accepted steps not too small. To achieve that, we define the acceptance rate as the number of accepted steps over the total number of steps. Adjusting the time step such that the acceptance rate is close to 0.5 is a good compromise for the current problem.

3.3.2 Exercise

3.3.2.1 Python

#!/usr/bin/env python3

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a,nmax,dt):

    # TODO

    return energy/nmax, N_accep/nmax


# Run simulation
a    = 1.2
nmax = 100000
dt   = #TODO

X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]

# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")

# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")

3.3.2.2 Fortran

subroutine metropolis_montecarlo(a,nmax,dt,energy,accep)
  implicit none
  double precision, intent(in)  :: a
  integer*8       , intent(in)  :: nmax 
  double precision, intent(in)  :: dt 
  double precision, intent(out) :: energy
  double precision, intent(out) :: accep

  integer*8        :: istep
  integer*8        :: n_accep
  double precision :: r_old(3), r_new(3), psi_old, psi_new
  double precision :: v, ratio

  double precision, external :: e_loc, psi, gaussian

  ! TODO

end subroutine metropolis_montecarlo

program qmc
  implicit none
  double precision, parameter :: a     = 1.2d0
  double precision, parameter :: dt    = ! TODO
  integer*8       , parameter :: nmax  = 100000
  integer         , parameter :: nruns = 30

  integer          :: irun
  double precision :: X(nruns), Y(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call metropolis_montecarlo(a,nmax,dt,X(irun),Y(irun))
  enddo

  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err

  call ave_error(Y,nruns,ave,err)
  print *, 'A = ', ave, '+/-', err

end program qmc

3.3.2.3 C

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h> // for size_t
#include <time.h>
#include <math.h>
#include "hydrogen.h"
#include "qmc_stats.h"

void metropolis_montecarlo(double a, size_t nmax, double dt,
                           double *energy, double *accep)
{
    // TODO
}

int main(void) {

#define a     1.2
#define nmax  100000
#define dt    //TODO
#define nruns 30

    double energy[nruns];
    double accep[nruns];
    double ave, err;

    srand48(time(NULL));

    for (size_t irun = 0; irun < nruns; irun++) {
        metropolis_montecarlo(a, nmax, dt, energy, accep);
    }

    ave_error(energy, nruns, &ave, &err);
    printf("E = %f +/- %f\n", ave, err);

    ave_error(accep, nruns, &ave, &err);
    printf("A = %f +/- %f\n", ave, err);

    return 0;
}

3.3.3 Solution

3.3.3.1 Python

#!/usr/bin/env python3

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a,nmax,dt):
    energy  = 0.
    N_accep = 0

    r_old = np.random.uniform(-dt, dt, (3))
    psi_old = psi(a,r_old)

    for istep in range(nmax):
        energy += e_loc(a,r_old)

        r_new = r_old + np.random.uniform(-dt,dt,(3))
        psi_new = psi(a,r_new)

        ratio = (psi_new / psi_old)**2

        if np.random.uniform() <= ratio:
            N_accep += 1

            r_old   = r_new
            psi_old = psi_new

    return energy/nmax, N_accep/nmax

# Run simulation
a    = 1.2
nmax = 100000
dt   = 1.0

X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]

# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")

# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
E = -0.4802595860693983 +/- 0.0005124420418289207
A = 0.5074913333333334 +/- 0.000350889422714878

3.3.3.2 Fortran

subroutine metropolis_montecarlo(a,nmax,dt,energy,accep)
  implicit none
  double precision, intent(in)  :: a
  integer*8       , intent(in)  :: nmax 
  double precision, intent(in)  :: dt
  double precision, intent(out) :: energy
  double precision, intent(out) :: accep

  double precision :: r_old(3), r_new(3), psi_old, psi_new
  double precision :: v, ratio, u(3)
  integer*8        :: n_accep
  integer*8        :: istep

  double precision, external :: e_loc, psi, gaussian

  energy  = 0.d0
  n_accep = 0_8

  call random_number(r_old)
  r_old(:) = dt * (2.d0*r_old(:) - 1.d0)
  psi_old = psi(a,r_old)

  do istep = 1,nmax
     energy = energy + e_loc(a,r_old)

     call random_number(u)
     r_new(:) = r_old(:) + dt*(2.d0*u(:) - 1.d0)

     psi_new = psi(a,r_new)

     ratio = (psi_new / psi_old)**2
     call random_number(v)

     if (v <= ratio) then

        n_accep = n_accep + 1_8

        r_old(:) = r_new(:)
        psi_old = psi_new

     endif

  end do

  energy = energy / dble(nmax)
  accep  = dble(n_accep) / dble(nmax)

end subroutine metropolis_montecarlo

program qmc
  implicit none
  double precision, parameter :: a = 1.2d0
  double precision, parameter :: dt = 1.0d0
  integer*8       , parameter :: nmax = 100000
  integer         , parameter :: nruns = 30

  integer          :: irun
  double precision :: X(nruns), Y(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call metropolis_montecarlo(a,nmax,dt,X(irun),Y(irun))
  enddo

  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err

  call ave_error(Y,nruns,ave,err)
  print *, 'A = ', ave, '+/-', err

end program qmc
 E =  -0.48031509056922989      +/-   4.6803231523088529E-004
 A =   0.50765333333333340      +/-   3.4368267017377720E-004

3.3.3.3 C

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h> // for size_t
#include <math.h>
#include <time.h>
#include "hydrogen.h"
#include "qmc_stats.h"

void metropolis_montecarlo(double a, size_t nmax, double dt,
                           double *energy, double *accep)
{
    double r_old[3], r_new[3], psi_old, psi_new, v, ratio;
    size_t n_accep = 0;

    *energy = 0.0;

    for (int i = 0; i < 3; i++) {
        r_old[i] = dt * (2.0*drand48() - 1.0);
    }
    psi_old = psi(a, r_old);

    for (size_t istep = 0; istep < nmax; istep++) {
        *energy += e_loc(a, r_old);

        for (int i = 0; i < 3; i++) {
            r_new[i] = r_old[i] + dt * (2.0*drand48() - 1.0);
        }

        psi_new = psi(a, r_new);

        ratio = pow(psi_new / psi_old,2);
        v = drand48();

        if (v <= ratio) {
            n_accep++;
            for (int i = 0; i < 3; i++) {
                r_old[i] = r_new[i];
            }
            psi_old = psi_new;
        }
    }
    *energy = *energy / (double) nmax;
    *accep = (double) n_accep / (double) nmax;
}

int main(void) {

#define a      1.2
#define nmax   100000
#define dt     1.0
#define nruns  30

    double X[nruns];
    double Y[nruns];
    double ave, err;

    srand48(time(NULL));

    for (size_t irun = 0; irun < nruns; irun++) {
        metropolis_montecarlo(a, nmax, dt, &X[irun], &Y[irun]);
    }

    ave_error(X, nruns, &ave, &err);
    printf("E = %f +/- %f\n", ave, err);

    ave_error(Y, nruns, &ave, &err);
    printf("A = %f +/- %f\n", ave, err);

    return 0;
}
E = -0.479518 +/- 0.000466
A = 0.507560 +/- 0.000353

3.4 Generalized Metropolis algorithm

One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability.

The Metropolis acceptance step has to be adapted keeping in mind that the detailed balance condition is satisfied. This means that the acceptance probability $A$ is chosen so that it is consistent with the probability of leaving $\mathbf{r}_n$ and the probability of entering $\mathbf{r}n+1$:

\[ P(\mathbf{r}n → \mathbf{r}n+1) = A(\mathbf{r}n → \mathbf{r}n+1) T(\mathbf{r}n → \mathbf{r}n+1) = A(\mathbf{r}n+1 → \mathbf{r}n) T(\mathbf{r}n+1 → \mathbf{r}n) \frac{P(\mathbf{r}n+1)}{P(\mathbf{r}n)} \]

where $T(\mathbf{r}_n → \mathbf{r}n+1)$ is the probability of transition from $\mathbf{r}_n$ to $\mathbf{r}n+1$ and $P(\mathbf{r}_n → \mathbf{r}n+1)$ is the conditional probability $P(\mathbf{r}_n | \mathbf{r}n+1)$ and $P(\mathbf{r}_n)$ is the probability of being in state $\mathbf{r}_n$.

In the previous example, we were using uniform sampling in a box centered at the current position. Hence, the transition probability was symmetric

\[ T(\mathbf{r}n → \mathbf{r}n+1) = T(\mathbf{r}n+1 → \mathbf{r}n) = \text{constant}\,, \]

so the expression of $A$ was simplified to the ratios of the squared wave functions.

Now, if instead of drawing uniform random numbers, we choose to draw Gaussian random numbers with zero mean and variance $δ t$, the transition probability becomes:

\[ T(\mathbf{r}n → \mathbf{r}n+1) = \frac{1}{(2π\,δ t)3/2} exp \left[ - \frac{\left( \mathbf{r}n+1 - \mathbf{r}n \right)^2}{2δ t} \right]\,. \]

Furthermore, to sample the density even better, we can “push” the electrons into in the regions of high probability, and “pull” them away from the low-probability regions. This will increase the acceptance ratios and improve the sampling.

To do this, we can use the gradient of the probability density

\[ \frac{∇ [ Ψ^2 ]}{Ψ^2} = 2 \frac{∇ Ψ}{Ψ}\,, \]

and add the so-called drift vector, $\frac{∇ Ψ}{Ψ}$, so that the numerical scheme becomes a drifted diffusion with transition probability:

\[ T(\mathbf{r}n → \mathbf{r}n+1) = \frac{1}{(2π\,δ t)3/2} exp \left[ - \frac{\left( \mathbf{r}n+1 - \mathbf{r}n - δ t\frac{∇ Ψ(\mathbf{r}_n)}{Ψ(\mathbf{r}_n)} \right)^2}{2\,δ t} \right]\,. \]

The corresponding move is proposed as

\[ \mathbf{r}n+1 = \mathbf{r}n + δ t\, \frac{∇ Ψ(\mathbf{r})}{Ψ(\mathbf{r})} + \sqrt{δ t}\, χ \,, \]

where $χ$ is a Gaussian random variable with zero mean and variance 1. Multiplying by $\sqrt{δ t}$ makes the variance of the additional noise equal to $δ{t}$.

Here is an illustration of a trajectory:

./H2_traj.png

Averaging all the trajectories converges to the density of the hydrogen atom. ./H2_traj2.png

The algorithm of the previous exercise is only slightly modified as:

  1. Evaluate the local energy at $\mathbf{r}n$ and accumulate it
  2. Compute a new position $\mathbf{r’} = \mathbf{r}_n + δ t\, \frac{∇ Ψ(\mathbf{r})}{Ψ(\mathbf{r})} + \sqrt{δ t}\,χ$
  3. Evaluate $Ψ(\mathbf{r}’)$ and $\frac{∇ Ψ(\mathbf{r’})}{Ψ(\mathbf{r’})}$ at the new position
  4. Compute the ratio $A = \frac{T(\mathbf{r}’ → \mathbf{r}n) P(\mathbf{r}’)}{T(\mathbf{r}n → \mathbf{r}’) P(\mathbf{r}n)}$
  5. Draw a uniform random number $v ∈ [0,1]$
  6. if $v ≤ A$, accept the move : set $\mathbf{r}n+1 = \mathbf{r’}$
  7. else, reject the move : set $\mathbf{r}n+1 = \mathbf{r}_n$

3.4.1 Gaussian random number generator

To obtain Gaussian-distributed random numbers, you can apply the Box Muller transform to uniform random numbers:

\begin{eqnarray*} z_1 &=& \sqrt{-2 ln u_1} cos(2 π u_2)
z_2 &=& \sqrt{-2 ln u_1} sin(2 π u_2) \end{eqnarray*}

This gives Gaussian-distributed random numbers with zero mean and a variance of one.

Below is a Fortran and a C implementation returning a Gaussian-distributed n-dimensional vector $\mathbf{z}$. This will be useful for the following sections. In Python, you can use the ~random.normal~ function of Numpy.

3.4.1.1 Fortran

subroutine random_gauss(z,n)
  implicit none
  integer, intent(in) :: n
  double precision, intent(out) :: z(n)
  double precision :: u(n+1)
  double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
  integer :: i

  call random_number(u)

  if (iand(n,1) == 0) then
     ! n is even
     do i=1,n,2
        z(i)   = dsqrt(-2.d0*dlog(u(i))) 
        z(i+1) = z(i) * dsin( two_pi*u(i+1) )
        z(i)   = z(i) * dcos( two_pi*u(i+1) )
     end do

  else
     ! n is odd
     do i=1,n-1,2
        z(i)   = dsqrt(-2.d0*dlog(u(i))) 
        z(i+1) = z(i) * dsin( two_pi*u(i+1) )
        z(i)   = z(i) * dcos( two_pi*u(i+1) )
     end do

     z(n)   = dsqrt(-2.d0*dlog(u(n))) 
     z(n)   = z(n) * dcos( two_pi*u(n+1) )

  end if

end subroutine random_gauss

3.4.1.2 C

void random_gauss(double* z, size_t n);
#include <stdlib.h>
void random_gauss(double* z, size_t n) {
    double u[n+1];
    double two_pi = 2.0 * acos(-1.0);
    size_t i;

    //generate random numbers
    for (i = 0; i <= n; i++) {
        u[i] = drand48();
    }

    if (n % 2 == 0) {
        // n is even
        for (i = 0; i < n; i += 2) {
            z[i]   = sqrt(-2.0 * log(u[i]));
            z[i+1] = z[i] * sin(two_pi * u[i+1]);
            z[i]   = z[i] * cos(two_pi * u[i+1]);
        }
    } else {
        // n is odd
        for (i = 0; i < n-1; i += 2) {
            z[i]   = sqrt(-2.0 * log(u[i]));
            z[i+1] = z[i] * sin(two_pi * u[i+1]);
            z[i]   = z[i] * cos(two_pi * u[i+1]);
        }
        z[n-1] = sqrt(-2.0 * log(u[n-1]));
        z[n-1] = z[n-1] * cos(two_pi * u[n]);
    }
}

3.4.2 Exercise 1

3.4.2.1 Python

def drift(a,r):
   # TODO

3.4.2.2 Fortran

subroutine drift(a,r,b)
  implicit none
  double precision, intent(in)  :: a, r(3)
  double precision, intent(out) :: b(3)

  ! TODO

end subroutine drift

3.4.2.3 C

void drift(double a, double r[3], double b[3]) {
  //TODO
}

3.4.3 Solution

3.4.3.1 Python

def drift(a,r):
   ar_inv = -a/np.sqrt(np.dot(r,r))
   return r * ar_inv

3.4.3.2 Fortran

subroutine drift(a,r,b)
  implicit none
  double precision, intent(in)  :: a, r(3)
  double precision, intent(out) :: b(3)

  double precision :: ar_inv

  ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
  b(:)   = r(:) * ar_inv

end subroutine drift

3.4.3.3 C

void drift(double a, double r[3], double b[3]);
void drift(double a, double r[3], double b[3]) {
  double ar_inv = -a / sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);
  for (int i = 0; i < 3; i++) {
    b[i] = r[i] * ar_inv;
  }
}

3.4.4 Exercise 2

3.4.4.1 Python

#!/usr/bin/env python3

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a,nmax,dt):
   # TODO

# Run simulation
a    = 1.2
nmax = 100000
dt   = # TODO

X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]

# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")

# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")

3.4.4.2 Fortran

subroutine variational_montecarlo(a,nmax,dt,energy,accep)
  implicit none
  double precision, intent(in)  :: a, dt
  integer*8       , intent(in)  :: nmax 
  double precision, intent(out) :: energy, accep

  integer*8        :: istep
  integer*8        :: n_accep
  double precision :: sq_dt, chi(3)
  double precision :: psi_old, psi_new
  double precision :: r_old(3), r_new(3)
  double precision :: d_old(3), d_new(3)

  double precision, external :: e_loc, psi

  ! TODO

end subroutine variational_montecarlo

program qmc
  implicit none
  double precision, parameter :: a     = 1.2d0
  double precision, parameter :: dt    = ! TODO
  integer*8       , parameter :: nmax  = 100000
  integer         , parameter :: nruns = 30

  integer          :: irun
  double precision :: X(nruns), accep(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call variational_montecarlo(a,nmax,dt,X(irun),accep(irun))
  enddo

  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err

  call ave_error(accep,nruns,ave,err)
  print *, 'A = ', ave, '+/-', err

end program qmc
gfortran hydrogen.F90 qmc_stats.F90 vmc_metropolis.F90 -o vmc_metropolis
./vmc_metropolis

3.4.4.3 C

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h> // for size_t
#include <math.h>
#include <time.h>
#include "hydrogen.h"
#include "qmc_stats.h"

void variational_montecarlo(double a, size_t nmax, double dt, 
                            double *energy, double *accep)
{
  // TODO
}


int main(void) {

#define a      1.2
#define nmax   100000
#define dt     // TODO
#define nruns  30

    double X[nruns];
    double Y[nruns];
    double ave, err;

    srand48(time(NULL));

    for (size_t irun = 0; irun < nruns; irun++) {
        variational_montecarlo(a, nmax, dt, &X[irun], &Y[irun]);
    }

    ave_error(X, nruns, &ave, &err);
    printf("E = %f +/- %f\n", ave, err);

    ave_error(Y, nruns, &ave, &err);
    printf("A = %f +/- %f\n", ave, err);

    return 0;
}

3.4.5 Solution

3.4.5.1 Python

#!/usr/bin/env python3

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a,nmax,dt):
    sq_dt = np.sqrt(dt)

    energy  = 0.
    N_accep = 0

    r_old   = np.random.normal(loc=0., scale=1.0, size=(3))
    d_old   = drift(a,r_old)
    d2_old  = np.dot(d_old,d_old)
    psi_old = psi(a,r_old)

    for istep in range(nmax):
        chi = np.random.normal(loc=0., scale=1.0, size=(3))

        energy += e_loc(a,r_old)

        r_new   = r_old + dt * d_old + sq_dt * chi
        d_new   = drift(a,r_new)
        d2_new  = np.dot(d_new,d_new)
        psi_new = psi(a,r_new)

        # Metropolis
        prod    = np.dot((d_new + d_old), (r_new - r_old))
        argexpo = 0.5 * (d2_new - d2_old)*dt + prod

        q = psi_new / psi_old
        q = np.exp(-argexpo) * q*q

        if np.random.uniform() <= q:
            N_accep += 1

            r_old   = r_new
            d_old   = d_new
            d2_old  = d2_new
            psi_old = psi_new

    return energy/nmax, N_accep/nmax


# Run simulation
a    = 1.2
nmax = 100000
dt   = 1.0

X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]

# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")

# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
E = -0.48034171558629885 +/- 0.0005286038561061781
A = 0.6210380000000001 +/- 0.0005457375900937905

3.4.5.2 Fortran

subroutine variational_montecarlo(a,nmax,dt,energy,accep)
  implicit none
  double precision, intent(in)  :: a, dt
  integer*8       , intent(in)  :: nmax 
  double precision, intent(out) :: energy, accep

  integer*8        :: istep
  integer*8        :: n_accep
  double precision :: sq_dt, chi(3), d2_old, prod, u
  double precision :: psi_old, psi_new, d2_new, argexpo, q
  double precision :: r_old(3), r_new(3)
  double precision :: d_old(3), d_new(3)

  double precision, external :: e_loc, psi

  sq_dt = dsqrt(dt)

  ! Initialization
  energy  = 0.d0
  n_accep = 0_8

  call random_gauss(r_old,3)

  call drift(a,r_old,d_old)
  d2_old  = d_old(1)*d_old(1) + &
            d_old(2)*d_old(2) + &
            d_old(3)*d_old(3)

  psi_old = psi(a,r_old)

  do istep = 1,nmax
     energy = energy + e_loc(a,r_old)

     call random_gauss(chi,3)
     r_new(:) = r_old(:) + dt*d_old(:) + chi(:)*sq_dt

     call drift(a,r_new,d_new)
     d2_new = d_new(1)*d_new(1) + &
              d_new(2)*d_new(2) + &
              d_new(3)*d_new(3)

     psi_new = psi(a,r_new)

     ! Metropolis
     prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
            (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
            (d_new(3) + d_old(3))*(r_new(3) - r_old(3))

     argexpo = 0.5d0 * (d2_new - d2_old)*dt + prod

     q = psi_new / psi_old
     q = dexp(-argexpo) * q*q

     call random_number(u)

     if (u <= q) then

        n_accep = n_accep + 1_8

        r_old(:) = r_new(:)
        d_old(:) = d_new(:)
        d2_old   = d2_new
        psi_old  = psi_new

     end if

  end do

  energy = energy / dble(nmax)
  accep  = dble(n_accep) / dble(nmax)

end subroutine variational_montecarlo

program qmc
  implicit none
  double precision, parameter :: a     = 1.2d0
  double precision, parameter :: dt    = 1.0d0
  integer*8       , parameter :: nmax  = 100000
  integer         , parameter :: nruns = 30

  integer          :: irun
  double precision :: X(nruns), accep(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call variational_montecarlo(a,nmax,dt,X(irun),accep(irun))
  enddo

  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err

  call ave_error(accep,nruns,ave,err)
  print *, 'A = ', ave, '+/-', err

end program qmc
 E =  -0.47965766050774800      +/-   5.0599992102209337E-004
 A =   0.62055466666666670      +/-   4.3100330247376571E-004

3.4.5.3 C

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h> // for size_t
#include <math.h>
#include <time.h>
#include "hydrogen.h"
#include "qmc_stats.h"

void variational_montecarlo(double a, size_t nmax, double dt, 
                            double *energy, double *accep)
{
    double chi[3], d2_old, prod, u;
    double psi_old, psi_new, d2_new, argexpo, q;
    double r_old[3], r_new[3];
    double d_old[3], d_new[3];
    size_t istep, n_accep = 0;

    double sq_dt = sqrt(dt);

    // Initialization
    *energy = 0.0;

    random_gauss(r_old, 3);

    drift(a, r_old, d_old);
    d2_old = d_old[0]*d_old[0] + d_old[1]*d_old[1] + d_old[2]*d_old[2];

    psi_old = psi(a, r_old);

    for (istep = 0; istep < nmax; istep++) {
        *energy += e_loc(a, r_old);

        random_gauss(chi, 3);
        for (int i = 0; i < 3; i++) {
            r_new[i] = r_old[i] + dt*d_old[i] + chi[i]*sq_dt;
        }

        drift(a, r_new, d_new);
        d2_new = d_new[0]*d_new[0] + d_new[1]*d_new[1] + d_new[2]*d_new[2];

        psi_new = psi(a, r_new);

        // Metropolis
        prod = (d_new[0] + d_old[0])*(r_new[0] - r_old[0]) +
               (d_new[1] + d_old[1])*(r_new[1] - r_old[1]) +
               (d_new[2] + d_old[2])*(r_new[2] - r_old[2]);
        argexpo = 0.5 * (d2_new - d2_old)*dt + prod;

        q = psi_new / psi_old;
        q = exp(-argexpo) * q*q;

        u = drand48();

        if (u <= q) {
            n_accep++;
            for (int i = 0; i < 3; i++) {
                r_old[i] = r_new[i];
                d_old[i] = d_new[i];
            }
            d2_old = d2_new;
            psi_old = psi_new;
        }
    }
    *energy = *energy / (double) nmax;
    *accep = (double) n_accep / (double) nmax;
}


int main(void) {

#define a      1.2
#define nmax   100000
#define dt     1.0
#define nruns  30

    double X[nruns];
    double Y[nruns];
    double ave, err;

    srand48(time(NULL));

    for (size_t irun = 0; irun < nruns; irun++) {
        variational_montecarlo(a, nmax, dt, &X[irun], &Y[irun]);
    }

    ave_error(X, nruns, &ave, &err);
    printf("E = %f +/- %f\n", ave, err);

    ave_error(Y, nruns, &ave, &err);
    printf("A = %f +/- %f\n", ave, err);

    return 0;
}
E = -0.479814 +/- 0.000552
A = 0.621853 +/- 0.000401

4 Diffusion Monte Carlo

As we have seen, Variational Monte Carlo is a powerful method to compute integrals in large dimensions. It is often used in cases where the expression of the wave function is such that the integrals can’t be evaluated (multi-centered Slater-type orbitals, correlation factors, etc).

Diffusion Monte Carlo is different. It goes beyond the computation of the integrals associated with an input wave function, and aims at finding a near-exact numerical solution to the Schrödinger equation.

4.1 Schrödinger equation in imaginary time

Consider the time-dependent Schrödinger equation:

\[ i\frac{∂ Ψ(\mathbf{r},t)}{∂ t} = (\hat{H} -E\rm ref) Ψ(\mathbf{r},t)\,. \]

where we introduced a shift in the energy, $E\rm ref$, for reasons which will become apparent below.

We can expand a given starting wave function, $Ψ(\mathbf{r},0)$, in the basis of the eigenstates of the time-independent Hamiltonian, $Φ_k$, with energies $E_k$:

\[ Ψ(\mathbf{r},0) = ∑_k a_k\, Φ_k(\mathbf{r}). \]

The solution of the Schrödinger equation at time $t$ is

\[ Ψ(\mathbf{r},t) = ∑_k a_k exp \left( -i\, (E_k-E\rm ref)\, t \right) Φ_k(\mathbf{r}). \]

Now, if we replace the time variable $t$ by an imaginary time variable $τ=i\,t$, we obtain

\[ -\frac{∂ ψ(\mathbf{r}, τ)}{∂ τ} = (\hat{H} -E\rm ref) ψ(\mathbf{r}, τ) \]

where $ψ(\mathbf{r},τ) = Ψ(\mathbf{r},-i\,τ)$ and

\begin{eqnarray*} ψ(\mathbf{r},τ) &=& ∑_k a_k exp( -(E_k-E\rm ref)\, τ) Φ_k(\mathbf{r})
&=& exp(-(E_0-E\rm ref)\, τ)∑_k a_k exp( -(E_k-E_0)\, τ) Φ_k(\mathbf{r})\,. \end{eqnarray*}

For large positive values of $τ$, $ψ$ is dominated by the $k=0$ term, namely, the lowest eigenstate. If we adjust $E\rm ref$ to the running estimate of $E_0$, we can expect that simulating the differential equation in imaginary time will converge to the exact ground state of the system.

4.2 Relation to diffusion

The diffusion equation of particles is given by

\[ \frac{∂ ψ(\mathbf{r},t)}{∂ t} = D\, Δ ψ(\mathbf{r},t) \]

where $D$ is the diffusion coefficient. When the imaginary-time Schrödinger equation is written in terms of the kinetic energy and potential,

\[ \frac{∂ ψ(\mathbf{r}, τ)}{∂ τ} = \left(\frac{1}{2}Δ - [V(\mathbf{r}) -E\rm ref]\right) ψ(\mathbf{r}, τ)\,, \]

it can be identified as the combination of:

  • a diffusion equation (Laplacian)
  • an equation whose solution is an exponential (potential)

The diffusion equation can be simulated by a Brownian motion:

\[ \mathbf{r}n+1 = \mathbf{r}n + \sqrt{δ t}\, χ \]

where $χ$ is a Gaussian random variable, and the potential term can be simulated by creating or destroying particles over time (a so-called branching process) or by simply considering it as a cumulative multiplicative weight along the diffusion trajectory (pure Diffusion Monte Carlo):

\[ ∏_i exp \left( - (V(\mathbf{r}_i) - E\text{ref}) δ t \right). \]

We note that the ground-state wave function of a Fermionic system is antisymmetric and changes sign. Therefore, its interpretation as a probability distribution is somewhat problematic. In fact, mathematically, since the Bosonic ground state is lower in energy than the Fermionic one, for large $τ$, the system will evolve towards the Bosonic solution.

For the systems you will study, this is not an issue:

  • Hydrogen atom: You only have one electron!
  • Two-electron system ($H_2$ or He): The ground-wave function is antisymmetric in the spin variables but symmetric in the space ones.

Therefore, in both cases, you are dealing with a “Bosonic” ground state.

4.3 Importance sampling

In a molecular system, the potential is far from being constant and, in fact, diverges at the inter-particle coalescence points. Hence, it results in very large fluctuations of the weight associated with the potential, making the calculations impossible in practice. Fortunately, if we multiply the Schrödinger equation by a chosen trial wave function $Ψ_T(\mathbf{r})$ (Hartree-Fock, Kohn-Sham determinant, CI wave function, etc), one obtains

\[ -\frac{∂ ψ(\mathbf{r},τ)}{∂ τ} Ψ_T(\mathbf{r}) = \left[ -\frac{1}{2} Δ ψ(\mathbf{r},τ) + V(\mathbf{r}) ψ(\mathbf{r},τ) \right] Ψ_T(\mathbf{r}) \]

Defining $Π(\mathbf{r},τ) = ψ(\mathbf{r},τ) Ψ_T(\mathbf{r})$, (see appendix for details)

\[ -\frac{∂ Π(\mathbf{r},τ)}{∂ τ} = -\frac{1}{2} Δ Π(\mathbf{r},τ) + ∇ \left[ Π(\mathbf{r},τ) \frac{∇ Ψ_T(\mathbf{r})}{Ψ_T(\mathbf{r})} \right] + (E_L(\mathbf{r})-E\rm ref)Π(\mathbf{r},τ) \]

The new “kinetic energy” can be simulated by the drift-diffusion scheme presented in the previous section (VMC). The new “potential” is the local energy, which has smaller fluctuations when $Ψ_T$ gets closer to the exact wave function. This term can be simulated by \[ ∏_i exp \left( - (E_L(\mathbf{r}_i) - E\text{ref}) δ t \right). \] where $E\rm ref$ is the constant we had introduced above, which is adjusted to an estimate of the average energy to keep the weights close to one.

This equation generates the N-electron density $Π$, which is the product of the ground state solution with the trial wave function. You may then ask: how can we compute the total energy of the system?

To this aim, we use the mixed estimator of the energy:

\begin{eqnarray*} E(τ) &=& \frac{\langle ψ(τ) | \hat{H} | Ψ_T \rangle}{\langle ψ(τ) | Ψ_T \rangle}
&=& \frac{∫ ψ(\mathbf{r},τ) \hat{H} Ψ_T(\mathbf{r}) d\mathbf{r}} {∫ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) d\mathbf{r}} \ &=& \frac{∫ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) E_L(\mathbf{r}) d\mathbf{r}} {∫ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) d\mathbf{r}} \,. \end{eqnarray*}

For large $τ$, we have that

\[ Π(\mathbf{r},τ) =ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) → Φ_0(\mathbf{r}) Ψ_T(\mathbf{r})\,, \]

and, using that $\hat{H}$ is Hermitian and that $Φ_0$ is an eigenstate of the Hamiltonian, we obtain for large $τ$

\[ E(τ) = \frac{\langle ψ_τ | \hat{H} | Ψ_T \rangle} {\langle ψ_τ | Ψ_T \rangle} = \frac{\langle Ψ_T | \hat{H} | ψ_τ \rangle} {\langle Ψ_T | ψ_τ \rangle} → E_0 \frac{\langle Ψ_T | Φ_0 \rangle} {\langle Ψ_T | Φ_0 \rangle} = E_0 \]

Therefore, we can compute the energy within DMC by generating the density $Π$ with random walks, and simply averaging the local energies computed with the trial wave function.

4.3.1 Appendix : Details of the Derivation

\[ -\frac{∂ ψ(\mathbf{r},τ)}{∂ τ} Ψ_T(\mathbf{r}) = \left[ -\frac{1}{2} Δ ψ(\mathbf{r},τ) + V(\mathbf{r}) ψ(\mathbf{r},τ) \right] Ψ_T(\mathbf{r}) \]

\[ -\frac{∂ \big[ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \big]}{∂ τ} = -\frac{1}{2} \Big( Δ \big[ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \big] - ψ(\mathbf{r},τ) Δ Ψ_T(\mathbf{r}) - 2 ∇ ψ(\mathbf{r},τ) ∇ Ψ_T(\mathbf{r}) \Big) + V(\mathbf{r}) ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \]

\[ -\frac{∂ \big[ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \big]}{∂ τ} = -\frac{1}{2} Δ \big[ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \big] + \frac{1}{2} ψ(\mathbf{r},τ) Δ Ψ_T(\mathbf{r}) + Ψ_T(\mathbf{r})∇ ψ(\mathbf{r},τ) \frac{∇ Ψ_T(\mathbf{r})}{Ψ_T(\mathbf{r})} + V(\mathbf{r}) ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \]

\[ -\frac{∂ \big[ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \big]}{∂ τ} = -\frac{1}{2} Δ \big[ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \big] + ψ(\mathbf{r},τ) Δ Ψ_T(\mathbf{r}) + Ψ_T(\mathbf{r})∇ ψ(\mathbf{r},τ) \frac{∇ Ψ_T(\mathbf{r})}{Ψ_T(\mathbf{r})} + E_L(\mathbf{r}) ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \] \[ -\frac{∂ \big[ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \big]}{∂ τ} = -\frac{1}{2} Δ \big[ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \big] + ∇ \left[ ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \frac{∇ Ψ_T(\mathbf{r})}{Ψ_T(\mathbf{r})} \right] + E_L(\mathbf{r}) ψ(\mathbf{r},τ) Ψ_T(\mathbf{r}) \]

Defining $Π(\mathbf{r},t) = ψ(\mathbf{r},τ) Ψ_T(\mathbf{r})$,

\[ -\frac{∂ Π(\mathbf{r},τ)}{∂ τ} = -\frac{1}{2} Δ Π(\mathbf{r},τ) + ∇ \left[ Π(\mathbf{r},τ) \frac{∇ Ψ_T(\mathbf{r})}{Ψ_T(\mathbf{r})} \right] + E_L(\mathbf{r}) Π(\mathbf{r},τ) \]

4.4 Pure Diffusion Monte Carlo

Instead of having a variable number of particles to simulate the branching process as in the Diffusion Monte Carlo (DMC) algorithm, we use variant called pure Diffusion Monte Carlo (PDMC) where the potential term is considered as a cumulative product of weights:

\begin{eqnarray*} W(\mathbf{r}_n, τ) = ∏i=1n exp \left( -δ t\, (E_L(\mathbf{r}_i) - E\text{ref}) \right) = ∏i=1n w(\mathbf{r}_i) \end{eqnarray*}

where $\mathbf{r}_i$ are the coordinates along the trajectory and we introduced a time-step variable $δ t$ to discretize the integral.

The PDMC algorithm is less stable than the DMC algorithm: it requires to have a value of $E_\text{ref}$ which is close to the fixed-node energy, and a good trial wave function. Moreover, we can’t let $τ$ become too large because the weight whether explode or vanish: we need to have a fixed value of $τ$ (projection time). The big advantage of PDMC is that it is rather simple to implement starting from a VMC code:

  1. Start with $W(\mathbf{r}_0)=1, τ_0 = 0$
  2. Evaluate the local energy at $\mathbf{r}n$
  3. Compute the contribution to the weight $w(\mathbf{r}_n) = exp(-δ t(E_L(\mathbf{r}_n)-E_\text{ref}))$
  4. Update $W(\mathbf{r}n) = W(\mathbf{r}n-1) × w(\mathbf{r}_n)$
  5. Accumulate the weighted energy $W(\mathbf{r}_n) × E_L(\mathbf{r}_n)$, and the weight $W(\mathbf{r}_n)$ for the normalization
  6. Update $τ_n = τn-1 + δ t$
  7. If $τn > τ_\text{max}$ ($τ_\text{max}$ is an input parameter), the long projection time has been reached and we can start an new trajectory from the current position: reset $W(r_n) = 1$ and $τ_n = 0$
  8. Compute a new position $\mathbf{r’} = \mathbf{r}_n + δ t\, \frac{∇ Ψ(\mathbf{r})}{Ψ(\mathbf{r})} + \sqrt{δ t}\, χ$
  9. Evaluate $Ψ(\mathbf{r}’)$ and $\frac{∇ Ψ(\mathbf{r’})}{Ψ(\mathbf{r’})}$ at the new position
  10. Compute the ratio $A = \frac{T(\mathbf{r}’ → \mathbf{r}n) P(\mathbf{r}’)}{T(\mathbf{r}n → \mathbf{r}’) P(\mathbf{r}n)}$
  1. Draw a uniform random number $v ∈ [0,1]$
  2. if $v ≤ A$, accept the move : set $\mathbf{r}n+1 = \mathbf{r’}$
  3. else, reject the move : set $\mathbf{r}n+1 = \mathbf{r}_n$

Some comments are needed:

  • You estimate the energy as

    \begin{eqnarray*} E = \frac{∑k=1N_{\rm MC} E_L(\mathbf{r}_k) W(\mathbf{r}_k, kδ t)}{∑k=1N_{\rm MC} W(\mathbf{r}_k, kδ t)} \end{eqnarray*}

  • The result will be affected by a time-step error (the finite size of $δ t$) due to the discretization of the integral, and one has in principle to extrapolate to the limit $δ t → 0$. This amounts to fitting the energy computed for multiple values of $δ t$.

    Here, you will be using a small enough time-step and you should not worry about the extrapolation.

  • The accept/reject step (steps 9-12 in the algorithm) is in principle not needed for the correctness of the DMC algorithm. However, its use reduces significantly the time-step error.

4.5 Hydrogen atom

4.5.1 Exercise

4.5.1.1 Python

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a, nmax, dt, Eref):
    # TODO

# Run simulation
a     = 1.2
nmax  = 100000
dt    = 0.05
tau   = 100.
E_ref = -0.5

X0 = [ MonteCarlo(a, nmax, dt, E_ref) for i in range(30)]

# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")

# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")

4.5.1.2 Fortran

subroutine pdmc(a, nmax, dt, energy, accep, tau, E_ref)
  implicit none
  double precision, intent(in)  :: a, dt, tau
  integer*8       , intent(in)  :: nmax 
  double precision, intent(out) :: energy, accep
  double precision, intent(in)  :: E_ref

  integer*8        :: istep
  integer*8        :: n_accep
  double precision :: sq_dt, chi(3)
  double precision :: psi_old, psi_new
  double precision :: r_old(3), r_new(3)
  double precision :: d_old(3), d_new(3)

  double precision, external :: e_loc, psi

  ! TODO

end subroutine pdmc

program qmc
  implicit none
  double precision, parameter :: a     = 1.2d0
  double precision, parameter :: dt    = 0.05d0
  double precision, parameter :: E_ref = -0.5d0
  double precision, parameter :: tau   = 100.d0
  integer*8       , parameter :: nmax  = 100000
  integer         , parameter :: nruns = 30

  integer          :: irun
  double precision :: X(nruns), accep(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call pdmc(a, nmax, dt, X(irun), accep(irun), tau, E_ref)
  enddo

  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err

  call ave_error(accep,nruns,ave,err)
  print *, 'A = ', ave, '+/-', err

end program qmc
gfortran hydrogen.F90 qmc_stats.F90 pdmc.F90 -o pdmc
./pdmc

4.5.1.3 C

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h> // for size_t
#include <math.h>
#include <time.h>
#include "hydrogen.h"
#include "qmc_stats.h"

void pdmc(double a, size_t nmax, double dt, double *energy, double *accep,
          double tau, double e_ref)
{
  // TODO
}


int main(void) {

#define a      1.2
#define nmax   100000
#define dt     0.05
#define tau    100.0
#define e_ref  -0.5
#define nruns  30

    double X[nruns];
    double Y[nruns];
    double ave, err;

    srand48(time(NULL));

    for (size_t irun = 0; irun < nruns; irun++) {
        pdmc(a, nmax, dt, &X[irun], &Y[irun], tau, e_ref);
    }

    ave_error(X, nruns, &ave, &err);
    printf("E = %f +/- %f\n", ave, err);

    ave_error(Y, nruns, &ave, &err);
    printf("A = %f +/- %f\n", ave, err);

    return 0;
}
gcc hydrogen.c qmc_stats.c pdmc.c -lm -o pdmc
./pdmc

4.5.2 Solution

4.5.2.1 Python

#!/usr/bin/env python3

from hydrogen  import *
from qmc_stats import *

def MonteCarlo(a, nmax, dt, tau, Eref):
    sq_dt = np.sqrt(dt)

    energy        = 0.
    N_accep       = 0
    normalization = 0.

    w           = 1.
    tau_current = 0.

    r_old   = np.random.normal(loc=0., scale=1.0, size=(3))
    d_old   = drift(a,r_old)
    d2_old  = np.dot(d_old,d_old)
    psi_old = psi(a,r_old)

    for istep in range(nmax):
        el = e_loc(a,r_old)
        w *= np.exp(-dt*(el - Eref))

        normalization += w
        energy        += w * el

        tau_current += dt

        # Reset when tau is reached
        if tau_current > tau:
            w           = 1.
            tau_current = 0.

        chi = np.random.normal(loc=0., scale=1.0, size=(3))

        r_new = r_old + dt * d_old + sq_dt * chi
        d_new = drift(a,r_new)
        d2_new = np.dot(d_new,d_new)
        psi_new = psi(a,r_new)

        # Metropolis
        prod = np.dot((d_new + d_old), (r_new - r_old))
        argexpo = 0.5 * (d2_new - d2_old)*dt + prod

        q = psi_new / psi_old
        q = np.exp(-argexpo) * q*q

        if np.random.uniform() <= q:
            N_accep += 1
            r_old   = r_new
            d_old   = d_new
            d2_old  = d2_new
            psi_old = psi_new

    return energy/normalization, N_accep/nmax


# Run simulation
a     = 1.2
nmax  = 100000
dt    = 0.05
tau   = 100.
E_ref = -0.5

X0 = [ MonteCarlo(a, nmax, dt, tau, E_ref) for i in range(30)]

# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")

# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")

4.5.2.2 Fortran*

subroutine pdmc(a, dt, nmax, energy, accep, tau, E_ref)
  implicit none
  double precision, intent(in)  :: a, dt, tau
  integer*8       , intent(in)  :: nmax 
  double precision, intent(out) :: energy, accep
  double precision, intent(in)  :: E_ref

  integer*8        :: istep
  integer*8        :: n_accep
  double precision :: sq_dt, chi(3), d2_old, prod, u
  double precision :: psi_old, psi_new, d2_new, argexpo, q
  double precision :: r_old(3), r_new(3)
  double precision :: d_old(3), d_new(3)
  double precision :: e, w, normalization, tau_current

  double precision, external :: e_loc, psi

  sq_dt = dsqrt(dt)

  ! Initialization
  energy  = 0.d0
  n_accep = 0_8
  normalization = 0.d0

  w           = 1.d0
  tau_current = 0.d0

  call random_gauss(r_old,3)

  call drift(a,r_old,d_old)
  d2_old  = d_old(1)*d_old(1) + &
            d_old(2)*d_old(2) + &
            d_old(3)*d_old(3)

  psi_old = psi(a,r_old)

  do istep = 1,nmax
     e = e_loc(a,r_old)
     w = w * dexp(-dt*(e - E_ref))

     normalization = normalization + w
     energy = energy + w*e
     
     tau_current = tau_current + dt

     ! Reset when tau is reached
     if (tau_current > tau) then
        w           = 1.d0
        tau_current = 0.d0
     endif

     call random_gauss(chi,3)
     r_new(:) = r_old(:) + dt*d_old(:) + chi(:)*sq_dt

     call drift(a,r_new,d_new)
     d2_new = d_new(1)*d_new(1) + &
              d_new(2)*d_new(2) + &
              d_new(3)*d_new(3)

     psi_new = psi(a,r_new)

     ! Metropolis
     prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
            (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
            (d_new(3) + d_old(3))*(r_new(3) - r_old(3))

     argexpo = 0.5d0 * (d2_new - d2_old)*dt + prod

     q = psi_new / psi_old
     q = dexp(-argexpo) * q*q

     call random_number(u)

     if (u <= q) then

        n_accep = n_accep + 1_8

        r_old(:) = r_new(:)
        d_old(:) = d_new(:)
        d2_old   = d2_new
        psi_old  = psi_new

     end if

  end do

  energy = energy / normalization
  accep  = dble(n_accep) / dble(nmax)

end subroutine pdmc

program qmc
  implicit none
  double precision, parameter :: a     = 1.2d0
  double precision, parameter :: dt    = 0.05d0
  double precision, parameter :: E_ref = -0.5d0
  double precision, parameter :: tau   = 100.d0
  integer*8       , parameter :: nmax  = 100000
  integer         , parameter :: nruns = 30

  integer          :: irun
  double precision :: X(nruns), accep(nruns)
  double precision :: ave, err

  do irun=1,nruns
     call pdmc(a, dt, nmax, X(irun), accep(irun), tau, E_ref)
  enddo

  call ave_error(X,nruns,ave,err)
  print *, 'E = ', ave, '+/-', err

  call ave_error(accep,nruns,ave,err)
  print *, 'A = ', ave, '+/-', err

end program qmc
gfortran hydrogen.F90 qmc_stats.F90 pdmc.F90 -o pdmc
./pdmc

4.5.2.3 C

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h> // for size_t
#include <math.h>
#include <time.h>
#include "hydrogen.h"
#include "qmc_stats.h"

void pdmc(double a, size_t nmax, double dt, double *energy, double *accep,
          double tau, double e_ref)
{
    double chi[3], d2_old, prod, u;
    double psi_old, psi_new, d2_new, argexpo, q;
    double r_old[3], r_new[3];
    double d_old[3], d_new[3];
    size_t istep, n_accep;
    double e, w, tau_current, normalization;

    double sq_dt = sqrt(dt);

    // Initialization
    *energy = 0.0;
    n_accep = 0;
    normalization = 0.0;

    w = 1.0;
    tau_current = 0.0;

    random_gauss(r_old, 3);

    drift(a, r_old, d_old);
    d2_old = d_old[0]*d_old[0] +
             d_old[1]*d_old[1] +
             d_old[2]*d_old[2];

    psi_old = psi(a, r_old);

    for (istep = 0; istep < nmax; istep++) {
        e = e_loc(a, r_old);
        w *= exp(-dt*(e-e_ref));

        normalization += w;
        *energy += w*e;

        tau_current += dt;

        // Reset when tau is reached
        if (tau_current > tau) {
          w = 1.0;
          tau_current = 0.0;
        }

        random_gauss(chi, 3);
        for (int i = 0; i < 3; i++) {
            r_new[i] = r_old[i] + dt*d_old[i] + chi[i]*sq_dt;
        }

        drift(a, r_new, d_new);
        d2_new = d_new[0]*d_new[0] +
                 d_new[1]*d_new[1] +
                 d_new[2]*d_new[2];

        psi_new = psi(a, r_new);

        // Metropolis
        prod = (d_new[0] + d_old[0])*(r_new[0] - r_old[0]) +
               (d_new[1] + d_old[1])*(r_new[1] - r_old[1]) +
               (d_new[2] + d_old[2])*(r_new[2] - r_old[2]);

        argexpo = 0.5 * (d2_new - d2_old)*dt + prod;

        q = psi_new / psi_old;
        q = exp(-argexpo) * q*q;

        u = drand48();

        if (u <= q) {
            n_accep++;
            for (int i = 0; i < 3; i++) {
                r_old[i] = r_new[i];
                d_old[i] = d_new[i];
            }
            d2_old = d2_new;
            psi_old = psi_new;
        }
    }
    *energy = *energy / normalization;
    *accep = (double) n_accep / (double) nmax;
}


int main(void) {

#define a      1.2
#define dt     0.05
#define e_ref  -0.5
#define tau    100.0
#define nmax   100000
#define nruns  30

    double X[nruns];
    double Y[nruns];
    double ave, err;

    srand48(time(NULL));

    for (size_t irun = 0; irun < nruns; irun++) {
        pdmc(a, nmax, dt, &X[irun], &Y[irun], tau, e_ref);
    }

    ave_error(X, nruns, &ave, &err);
    printf("E = %f +/- %f\n", ave, err);

    ave_error(Y, nruns, &ave, &err);
    printf("A = %f +/- %f\n", ave, err);

    return 0;
}
gcc hydrogen.c qmc_stats.c pdmc.c -lm -o pdmc
./pdmc

5 Project

Change your PDMC code for one of the following:

  • the Helium atom, or
  • the H_2 molecule at $R$ =1.401 bohr.

And compute the ground state energy.

6 Acknowledgments

https://trex-coe.eu/sites/default/files/inline-images/euflag.jpg

TREX : Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union’s Horizon 2020 - Research and Innovation program - under grant agreement no. 952165. The content of this document does not represent the opinion of the European Union, and the European Union is not responsible for any use that might be made of such content.