-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrainer.py
432 lines (341 loc) · 15.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import argparse
import json
import gym
import torch as th
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.monitor import Monitor
from pantheonrl.common.wrappers import frame_wrap, recorder_wrap
from pantheonrl.common.agents import OnPolicyAgent, StaticPolicyAgent
from pantheonrl.algos.adap.adap_learn import ADAP
from pantheonrl.algos.adap.policies import AdapPolicyMult, AdapPolicy
from pantheonrl.algos.adap.agent import AdapAgent
from pantheonrl.algos.modular.learn import ModularAlgorithm
from pantheonrl.algos.modular.policies import ModularPolicy
from pantheonrl.algos.bc import BCShell, reconstruct_policy
from pantheonrl.envs.rpsgym.rps import RPSEnv, RPSWeightedAgent
from pantheonrl.envs.blockworldgym import simpleblockworld, blockworld
from pantheonrl.envs.liargym.liar import LiarEnv, LiarDefaultAgent
from overcookedgym.overcooked_utils import LAYOUT_LIST
ENV_LIST = ['RPS-v0', 'BlockEnv-v0', 'BlockEnv-v1', 'LiarsDice-v0',
'OvercookedMultiEnv-v0']
ADAP_TYPES = ['ADAP', 'ADAP_MULT']
EGO_LIST = ['PPO', 'ModularAlgorithm', 'LOAD'] + ADAP_TYPES
PARTNER_LIST = ['PPO', 'DEFAULT', 'FIXED'] + ADAP_TYPES
class EnvException(Exception):
""" Raise when parameters do not align with environment """
def input_check(args):
# Env checking
if args.env == 'OvercookedMultiEnv-v0':
if 'layout_name' not in args.env_config:
raise EnvException(f"layout_name needed for {args.env}")
elif args.env_config['layout_name'] not in LAYOUT_LIST:
raise EnvException(
f"{args.env_config['layout_name']} is not a valid layout")
# Construct alt configs
if args.alt_config is None:
args.alt_config = [{} for _ in args.alt]
elif len(args.alt_config) != len(args.alt):
raise EnvException(
"Number of partners is different from number of configs")
# Construct ego config
if 'verbose' not in args.ego_config:
args.ego_config['verbose'] = 1
if (args.tensorboard_log is not None) != \
(args.tensorboard_name is not None):
raise EnvException("Must define log and names for tensorboard")
def latent_check(args):
# Check for ADAP
all_adap = all([v in ADAP_TYPES for v in args.alt])
if args.ego not in ADAP_TYPES or not all_adap:
raise EnvException(
"both agents must be ADAP or ADAP_MULT to share latent spaces")
if 'context_size' not in args.ego_config:
args.ego_config['context_size'] = 3
if 'context_sampler' not in args.ego_config:
args.ego_config['context_sampler'] = "l2"
for conf in args.alt_config:
if 'context_size' not in conf:
conf['context_size'] = args.ego_config['context_size']
elif conf['context_size'] != args.ego_config['context_size']:
raise EnvException("both agents must have similar configs \
to share latent spaces")
if 'context_sampler' not in conf:
conf['context_sampler'] = args.ego_config['context_sampler']
elif conf['context_sampler'] != args.ego_config['context_sampler']:
raise EnvException("both agents must have similar configs \
to share latent spaces")
def generate_env(args):
env = gym.make(args.env, **args.env_config)
altenv = env.getDummyEnv(1)
if args.framestack > 1:
env = frame_wrap(env, args.framestack)
altenv = frame_wrap(altenv, args.framestack)
if args.record is not None:
env = recorder_wrap(env)
return env, altenv
def generate_ego(env, args):
kwargs = args.ego_config
kwargs['env'] = env
kwargs['device'] = args.device
if args.seed is not None:
kwargs['seed'] = args.seed
kwargs['tensorboard_log'] = args.tensorboard_log
if args.ego == 'LOAD':
model = gen_load(kwargs, kwargs['type'], kwargs['location'])
# wrap env in Monitor and VecEnv wrapper
vec_env = DummyVecEnv([lambda: Monitor(env)])
model.set_env(vec_env)
if kwargs['type'] == 'ModularAlgorithm':
model.policy.do_init_weights(init_partner=True)
model.policy.num_partners = len(args.alt)
return model
elif args.ego == 'PPO':
return PPO(policy='MlpPolicy', **kwargs)
elif args.ego == 'ADAP':
return ADAP(policy=AdapPolicy, **kwargs)
elif args.ego == 'ADAP_MULT':
return ADAP(policy=AdapPolicyMult, **kwargs)
elif args.ego == 'ModularAlgorithm':
policy_kwargs = dict(num_partners=len(args.alt))
return ModularAlgorithm(policy=ModularPolicy,
policy_kwargs=policy_kwargs,
**kwargs)
else:
raise EnvException("Not a valid policy")
def gen_load(config, policy_type, location):
if policy_type in ADAP_TYPES:
if 'latent_val' not in config:
raise EnvException("latent_val needs to be specified for \
FIXED ADAP policy")
latent_val = th.tensor(config.pop('latent_val'))
agent = ADAP.load(location)
agent.policy.set_context(latent_val)
elif policy_type == 'PPO':
agent = PPO.load(location)
elif policy_type == 'ModularAlgorithm':
agent = ModularAlgorithm.load(location)
elif policy_type == 'BC':
agent = BCShell(reconstruct_policy(location))
else:
raise EnvException("Not a valid FIXED/LOAD policy")
return agent
def gen_fixed(config, policy_type, location):
agent = gen_load(config, policy_type, location)
return StaticPolicyAgent(agent.policy)
def gen_default(config, altenv):
if isinstance(altenv, RPSEnv):
return RPSWeightedAgent(**config)
if config:
raise EnvException("No config possible for this default agent")
if altenv == simpleblockworld.PartnerEnv:
return simpleblockworld.SBWDefaultAgent()
elif altenv == blockworld.PartnerEnv:
return blockworld.DefaultConstructorAgent()
elif isinstance(altenv, LiarEnv):
return LiarDefaultAgent()
else:
raise EnvException("No default policy available")
def gen_partner(type, config, altenv, ego, args):
if type == 'FIXED':
return gen_fixed(config, config['type'], config['location'])
elif type == 'DEFAULT':
return gen_default(config, altenv)
if args.tensorboard_log is not None:
agentarg = {
'tensorboard_log': args.tensorboard_log,
'tb_log_name': args.tensorboard_name+'_alt_'+str(args.partner_num)
}
else:
agentarg = {}
config['env'] = altenv
config['device'] = args.device
if args.seed is not None:
config['seed'] = args.seed
config['verbose'] = args.verbose_partner
if type == 'PPO':
return OnPolicyAgent(PPO(policy='MlpPolicy', **config), **agentarg)
if type == 'ADAP':
alt = ADAP(policy=AdapPolicy, **config)
elif type == 'ADAP_MULT':
alt = ADAP(policy=AdapPolicyMult, **config)
else:
raise EnvException("Not a valid policy")
shared = ego.policy if args.share_latent else None
return AdapAgent(alt, latent_syncer=shared, **agentarg)
def generate_partners(altenv, env, ego, args):
partners = []
for i in range(len(args.alt)):
args.partner_num = i
v = gen_partner(args.alt[i],
args.alt_config[i],
altenv,
ego,
args)
print(f'Partner {i}: {v}')
env.add_partner_agent(v)
partners.append(v)
return partners
def preset(args, preset_id):
'''
helpful defaul configuration settings
'''
if preset_id == 1:
env_name = args.env
if 'layout_name' in args.env_config:
env_name = "%s-%s" % (args.env, args.env_config['layout_name'])
if args.tensorboard_log is None:
args.tensorboard_log = 'logs'
if args.tensorboard_name is None:
args.tensorboard_name = '%s-%s%s-%d' % (
env_name, args.ego, args.alt[0], args.seed)
if args.ego_save is None:
args.ego_save = 'models/%s-%s-ego-%d' % (
env_name, args.ego, args.seed)
if args.alt_save is None:
args.alt_save = 'models/%s-%s-alt-%d' % (
env_name, args.alt[0], args.seed)
# if not args.record:
# args.record = 'trajs/%s-%s%s-%d' % (env_name, args.ego, args.alt[0], args.seed)
else:
raise Exception("Invalid preset id")
return args
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description='''\
Train ego and partner(s) in an environment.
Environments:
-------------
All MultiAgentEnv environments are supported. Some have additional
parameters that can be passed into --env-config. Specifically,
OvercookedMultiEnv-v0 has a required layout_name parameter, so
one must add:
--env-config '{"layout_name":"[SELECTED_LAYOUT]"}'
OvercookedMultiEnv-v0 also has parameters `ego_agent_idx` and
`baselines`, but these have default initializations. LiarsDice-v0
has an optional parameter, `probegostart`.
The environment can be wrapped with a framestack, which transforms
the observation to stack previous observations as a workaround
for recurrent networks not being supported. It can also be wrapped
with a recorder wrapper, which will write the transitions to the
given file.
Ego-Agent:
----------
The ego-agent is considered the main agent in the environment.
From the perspective of the ego agent, the environment functions
like a regular gym environment.
Supported ego-agent algorithms include PPO, ModularAlgorithm, ADAP,
and ADAP_MULT. The default parameters of these algorithms can
be overriden using --ego-config.
Alt-Agents:
-----------
The alt-agents are the partner agents that are embedded in the
environment. If multiple are listed, the environment randomly
samples one of them to be the partner at the start of each episode.
Supported alt-agent algorithms include PPO, ADAP, ADAP_MULT,
DEFAULT, and FIXED. DEFAULT refers to the default hand-made policy
in the environment (if it exists). FIXED refers to a policy that
has already been saved to a file, and will not learn anymore.
Default parameters for these algorithms can be overriden using
--alt-config. For FIXED policies, one must have parameters for
`type` and `location` to load in the policies. If the FIXED
policy is an ADAP policy, it must also have a `latent_val`
parameter.
NOTE:
All configs are based on the json format, and will be interpreted
as dictionaries for the kwargs of their initializers.
Example usage (Overcooked with ADAP agents that share the latent
space):
python3 trainer.py OvercookedMultiEnv-v0 ADAP ADAP --env-config
'{"layout_name":"random0"}' -l
''')
parser.add_argument('env',
choices=ENV_LIST,
help='The environment to train in')
parser.add_argument('ego',
choices=EGO_LIST,
help='Algorithm for the ego agent')
parser.add_argument('alt',
choices=PARTNER_LIST,
nargs='+',
help='Algorithm for the partner agent')
parser.add_argument('--total-timesteps', '-t',
type=int,
default=500000,
help='Number of time steps to run (ego perspective)')
parser.add_argument('--device', '-d',
default='auto',
help='Device to run pytorch on')
parser.add_argument('--seed', '-s',
default=None,
type=int,
help='Seed for randomness')
parser.add_argument('--ego-config',
type=json.loads,
default={},
help='Config for the ego agent')
parser.add_argument('--alt-config',
type=json.loads,
nargs='*',
help='Config for the ego agent')
parser.add_argument('--env-config',
type=json.loads,
default={},
help='Config for the environment')
# Wrappers
parser.add_argument('--framestack', '-f',
type=int,
default=1,
help='Number of observations to stack')
parser.add_argument('--record', '-r',
help='Saves joint trajectory into file specified')
parser.add_argument('--ego-save',
help='File to save the ego agent into')
parser.add_argument('--alt-save',
help='File to save the partner agent into')
parser.add_argument('--share-latent', '-l',
action='store_true',
help='True when both actors are ADAP and want to sync \
latent values')
parser.add_argument('--tensorboard-log',
help='Log directory for tensorboard')
parser.add_argument('--tensorboard-name',
help='Name for ego in tensorboard')
parser.add_argument('--verbose-partner',
action='store_true',
help='True when partners should log to output')
parser.add_argument('--preset', type=int, help='Use preset args')
args = parser.parse_args()
if args.preset:
args = preset(args, args.preset)
input_check(args)
if args.share_latent:
latent_check(args)
print(f"Arguments: {args}")
env, altenv = generate_env(args)
print(f"Environment: {env}; Partner env: {altenv}")
ego = generate_ego(env, args)
print(f'Ego: {ego}')
partners = generate_partners(altenv, env, ego, args)
learn_config = {'total_timesteps': args.total_timesteps}
if args.tensorboard_log:
learn_config['tb_log_name'] = args.tensorboard_name
ego.learn(**learn_config)
if args.record:
transition = env.get_transitions()
transition.write_transition(args.record)
if args.ego_save:
ego.save(args.ego_save)
if args.alt_save:
if len(partners) == 1:
try:
partners[0].model.save(args.alt_save)
except AttributeError:
print("FIXED or DEFAULT partners are not saved")
else:
for i in range(len(partners)):
try:
partners[i].model.save(f"{args.alt_save}/{i}")
except AttributeError:
print("FIXED or DEFAULT partners are not saved")