Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Errors running "python -m tracklab.main -cn soccernet" giving final GS-HOTA = 0% #11

Open
frj555 opened this issue May 28, 2024 · 10 comments

Comments

@frj555
Copy link

frj555 commented May 28, 2024

(tracklab) PS X:\Pycharmproj\Sngamestate\sn-gamestate> python -m tracklab.main -cn soccernet
[2024-05-27 17:44:38,788][main][INFO] - Using device: 'cuda'.
Loading SoccerNetGS 'train' set videos ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:06
Loading SoccerNetGS 'valid' set videos ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:06
Loading SoccerNetGS 'test' set videos ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:06
Loading SoccerNetGS 'challenge' set videos ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:06
Overwriting current config with config loaded from X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid/prtreid-soccernet-baseline.pth.tar
Diff from default config :
{'batch_size': 32,
'ce': 0.0,
'dim_reduce_output': 256,
'hrnet_pretrained_path': 'X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid',
'id': 0.0,
'load_config': True,
'mask_filtering_testing': False,
'max_epoch': 20,
'preprocess': 'id',
'test_embeddings': "['globl']",
'tr': 0.0,
'train_sampler': 'PrtreidSampler',
'train_sampler_t': 'PrtreidSampler'}
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth
The model and loaded state dict do not match exactly

unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std

05/27 17:45:15 - mmengine - WARNING - Failed to search registry with scope "mmocr" in the "function" registry tree. As a workaround, the current "function" registry in "mmengine" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmocr" is a correct scope, or whether the registry is initialized.
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth
The model and loaded state dict do not match exactly

unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std

Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth
The model and loaded state dict do not match exactly

unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std

Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth
The model and loaded state dict do not match exactly

unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std

[05/27/24 17:45:17] INFO Pipeline: YOLOv8 -> PRTReId -> BPBReIDStrongSORT -> TVCalib_Segmentation -> TVCalib -> MMOCR -> MajorityVoteTracklet -> TrackletTeamClustering -> TrackletTeamSideLabeling module.py:68
INFO Starting tracking operation on valid set. main.py:47
INFO Saving TrackerState to X:\Pycharmproj\Sngamestate\sn-gamestate\outputs\sn-gamestate\2024-05-27\17-44-38\states\sn-gamestate.pklz tracker_state.py:45
INFO Pipeline has been validated module.py:85
building model on device cuda
=> init weights from normal distribution
Loading pretrained ImageNet HRNet32 model at X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid\hrnetv2_w32_imagenet_pretrained.pth
=> loading pretrained model X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid\hrnetv2_w32_imagenet_pretrained.pth
Successfully loaded pretrained weights from "X://Pycharmproj/Sngamestate/sn-gamestate/pretrained_models/reid/prtreid-soccernet-baseline.pth.tar"
** The following layers are discarded due to unmatched keys or layer size: ['global_identity_classifier.classifier.weight', 'background_identity_classifier.classifier.weight', 'foreground_identity_classifier.classifier.weight',
'concat_parts_identity_classifier.classifier.weight', 'parts_identity_classifier.0.classifier.weight']
Building train transforms ...

  • resize to 256x128
  • normalization (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  • to torch tensor of range [0, 1]
    Building test transforms ...
  • resize to 256x128
  • to torch tensor of range [0, 1]
  • normalization (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  • masks preprocess = id
  • use add background mask
    Tracking videos (SNGS-021) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1/1 0:52:08 • 0:00:00
    [05/27/24 18:40:13] INFO Starting evaluation. main.py:107
    INFO Starting evaluation using TrackEval library (https://github.com/JonathonLuiten/TrackEval) trackeval_evaluator.py:28
    INFO Tracking predictions saved in SoccerNetGS format in eval\pred\SoccerNetGS-valid\tracklab trackeval_evaluator.py:45
    INFO Tracking ground truth saved in SoccerNetGS format in eval\pred\SoccerNetGS-valid\tracklab trackeval_evaluator.py:65
    Initializing the dataset class for the SoccerNet Game State Reconstruction task.
    IMPORTANT: The official evaluation metric for the task, i.e. the 'GS-HOTA' will appear under the 'HOTA' name in the evaluation script output.
    This happen because GS-HOTA mainly uses the same logic as the HOTA metric, the HOTA evaluation class is therefore not forked but re-used.
    The key practical difference between the GS-HOTA and the HOTA is actually the similarity metric used to match predictions with ground truth.Since this similarity score is computed outside the HOTA class (i.e. inside the SoccerNetGS dataset class), there was no need to fork it into a GS-HOTA class.
    Please refer to the official paper for more information.
    Using a sigma of 2.042694913268175 for the gaussian similarity metric, based on a distance tolerance of 5 meters.

Evaluating 1 tracker(s) on 1 sequence(s) for 1 class(es) on SoccerNetGS dataset using the following metrics: HOTA, Identity, Count

Evaluating tracklab

100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 14.70it/s]

HOTA: tracklab-cls_comb_cls_av HOTA DetA AssA DetRe DetPr AssRe AssPr LocA OWTA HOTA(0) LocA(0) HOTALocA(0)
COMBINED 0 0 0 0 0 0 0 100 0 0 100 0

Identity: tracklab-cls_comb_cls_av IDF1 IDR IDP IDTP IDFN IDFP
COMBINED 0 0 0 0 2067 0

Count: tracklab-cls_comb_cls_av Dets GT_Dets IDs GT_IDs
COMBINED 0 2067 0 19

HOTA: tracklab-cls_comb_det_av HOTA DetA AssA DetRe DetPr AssRe AssPr LocA OWTA HOTA(0) LocA(0) HOTALocA(0)
COMBINED 0 0 0 0 0 0 0 100 0 0 100 0

Identity: tracklab-cls_comb_det_av IDF1 IDR IDP IDTP IDFN IDFP
COMBINED 0 0 0 0 2067 0

Count: tracklab-cls_comb_det_av Dets GT_Dets IDs GT_IDs
COMBINED 0 2067 0 19
[05/27/24 18:40:15] INFO SoccerNet Game State Reconstruction performance GS-HOTA = 0% (config: EVAL_SPACE=pitch, USE_JERSEY_NUMBERS=True, USE_TEAMS=True, USE_ROLES=True, EVAL_DIST_TOL=5) soccernet_game_state.py:48
INFO Have a look at 'tracklab/tracklab/configs/dataset/soccernet_gs.yaml' for more details about the GS-HOTA metric and the evaluation configuration. soccernet_game_state.py:49
INFO Saved state at : X:\Pycharmproj\Sngamestate\sn-gamestate\outputs\sn-gamestate\2024-05-27\17-44-38\states\sn-gamestate.pklz main.py:66
[W C:\cb\pytorch_1000000000000\work\torch\csrc\CudaIPCTypes.cpp:95] Producer process tried to deallocate over 1000 memory blocks referred by consumer processes. Deallocation might be significantly slowed down. We assume it will never going to be the case, but if it is, please file but to https://github.com/pytorch/pytorch
[W C:\cb\pytorch_1000000000000\work\torch\csrc\CudaIPCTypes.cpp:15] Producer process has been terminated before all shared CUDA tensors released. See Note [Sharing CUDA tensors]
[W CUDAGuardImpl.h:46] Warning: CUDA warning: driver shutting down (function uncheckedGetDevice)
....

@VlSomers
Copy link
Collaborator

Hi @frj555, this is a strange issue that is difficult to analyse without further information.
It looks like the GS-HOTA is 0 because the pipeline did not produce any detection.
Can you please answer the following questions:

  1. Are Sn-Gamestate, Tracklab, and all other dependencies up to date? Especially Trackeval (https://github.com/SoccerNet/sn-trackeval). Please make sure to have everything up to date. Can you copy paste the versions of libraries in your current conda/poetry/pip environment here?
  2. Did you change anything in the codebase or have you just run the latest clone of the repository without modifications?
  3. Can you have a look at the finale produced video? If I'm not wrong, you should see no detections, but maybe pitch lines?

@frj555
Copy link
Author

frj555 commented May 28, 2024

Thank you for your quick answer:

I agree it seems no detection is performed regardless of the program running for more than 11 hours in my Intel(R) Core(TM) i7-9700K CPU 3.60 GHz 64 RAM, NVIDIA GForce RTX 2080 running the complete pipeline.

  1. I am working in Pycharm with a Conda environment and getting the updated git version from your repository.
    Output from conda list:# Name Version Build Channel
    absl-py 2.1.0 pypi_0 pypi
    addict 2.4.0 pypi_0 pypi
    aiohttp 3.9.5 pypi_0 pypi
    aiosignal 1.3.1 pypi_0 pypi
    alabaster 0.7.16 pypi_0 pypi
    albumentations 1.4.7 pypi_0 pypi
    annotated-types 0.6.0 pypi_0 pypi
    antlr4-python3-runtime 4.9.3 pypi_0 pypi
    archspec 0.2.3 pyhd8ed1ab_0 conda-forge
    async-timeout 4.0.3 pypi_0 pypi
    attrs 23.2.0 pypi_0 pypi
    babel 2.15.0 pypi_0 pypi
    beautifulsoup4 4.12.3 pypi_0 pypi
    blas 2.122 mkl conda-forge
    blas-devel 3.9.0 22_win64_mkl conda-forge
    boltons 24.0.0 pyhd8ed1ab_0 conda-forge
    brotli-python 1.1.0 py310h00ffb61_1 conda-forge
    bzip2 1.0.8 hcfcfb64_5 conda-forge
    ca-certificates 2024.2.2 h56e8100_0 conda-forge
    certifi 2024.2.2 pyhd8ed1ab_0 conda-forge
    cffi 1.16.0 py310h8d17308_0 conda-forge
    charset-normalizer 3.3.2 pyhd8ed1ab_0 conda-forge
    chumpy 0.66 pypi_0 pypi
    click 8.1.7 pypi_0 pypi
    colorama 0.4.6 pyhd8ed1ab_0 conda-forge
    conda 24.5.0 py310h5588dad_0 conda-forge
    conda-libmamba-solver 24.1.0 pyhd8ed1ab_0 conda-forge
    conda-package-handling 2.2.0 pyh38be061_0 conda-forge
    conda-package-streaming 0.9.0 pyhd8ed1ab_0 conda-forge
    contourpy 1.2.1 pypi_0 pypi
    cuda-cccl 12.4.127 0 nvidia
    cuda-cudart 11.7.99 0 nvidia
    cuda-cudart-dev 11.7.99 0 nvidia
    cuda-cupti 11.7.101 0 nvidia
    cuda-libraries 11.7.1 0 nvidia
    cuda-libraries-dev 11.7.1 0 nvidia
    cuda-nvrtc 11.7.99 0 nvidia
    cuda-nvrtc-dev 11.7.99 0 nvidia
    cuda-nvtx 11.7.91 0 nvidia
    cuda-runtime 11.7.1 0 nvidia
    cycler 0.12.1 pypi_0 pypi
    cython 3.0.10 pypi_0 pypi
    deepdiff 7.0.1 pypi_0 pypi
    distro 1.9.0 pyhd8ed1ab_0 conda-forge
    docker-pycreds 0.4.0 pypi_0 pypi
    docutils 0.20.1 pypi_0 pypi
    easyocr 1.7.1 pypi_0 pypi
    exceptiongroup 1.2.1 pypi_0 pypi
    filelock 3.14.0 pypi_0 pypi
    filterpy 1.4.5 pypi_0 pypi
    flake8 7.0.0 pypi_0 pypi
    fmt 10.2.1 h181d51b_0 conda-forge
    fonttools 4.51.0 pypi_0 pypi
    freetype 2.12.1 hdaf720e_2 conda-forge
    frozendict 2.4.4 py310ha8f682b_0 conda-forge
    frozenlist 1.4.1 pypi_0 pypi
    fsspec 2024.5.0 pypi_0 pypi
    future 1.0.0 pypi_0 pypi
    gdown 4.7.3 pypi_0 pypi
    gitdb 4.0.11 pypi_0 pypi
    gitpython 3.1.43 pypi_0 pypi
    google-measurement-protocol 1.1.0 pypi_0 pypi
    grpcio 1.63.0 pypi_0 pypi
    h5py 3.11.0 pypi_0 pypi
    huggingface-hub 0.23.0 pypi_0 pypi
    hydra-core 1.3.2 pypi_0 pypi
    idna 3.7 pyhd8ed1ab_0 conda-forge
    imageio 2.34.1 pypi_0 pypi
    imagesize 1.4.1 pypi_0 pypi
    imgaug 0.4.0 pypi_0 pypi
    importlib-metadata 7.1.0 pypi_0 pypi
    iniconfig 2.0.0 pypi_0 pypi
    intel-openmp 2024.1.0 h57928b3_965 conda-forge
    isort 5.13.2 pypi_0 pypi
    jinja2 3.1.4 pypi_0 pypi
    joblib 1.4.2 pypi_0 pypi
    jpeg 9e hcfcfb64_3 conda-forge
    json-tricks 3.17.3 pypi_0 pypi
    jsonpatch 1.33 pyhd8ed1ab_0 conda-forge
    jsonpointer 2.4 py310h5588dad_3 conda-forge
    kiwisolver 1.4.5 pypi_0 pypi
    kornia 0.6.3 pypi_0 pypi
    krb5 1.21.2 heb0366b_0 conda-forge
    lap 0.5.dev0 pypi_0 pypi
    lazy-loader 0.4 pypi_0 pypi
    lcms2 2.15 ha5c8aab_0 conda-forge
    lerc 4.0.0 h63175ca_0 conda-forge
    libarchive 3.7.2 h313118b_1 conda-forge
    libblas 3.9.0 22_win64_mkl conda-forge
    libcblas 3.9.0 22_win64_mkl conda-forge
    libcublas 11.10.3.66 0 nvidia
    libcublas-dev 11.10.3.66 0 nvidia
    libcufft 10.7.2.124 0 nvidia
    libcufft-dev 10.7.2.124 0 nvidia
    libcurand 10.3.5.147 0 nvidia
    libcurand-dev 10.3.5.147 0 nvidia
    libcurl 8.7.1 hd5e4a3a_0 conda-forge
    libcusolver 11.4.0.1 0 nvidia
    libcusolver-dev 11.4.0.1 0 nvidia
    libcusparse 11.7.4.91 0 nvidia
    libcusparse-dev 11.7.4.91 0 nvidia
    libdeflate 1.17 hcfcfb64_0 conda-forge
    libffi 3.4.2 h8ffe710_5 conda-forge
    libhwloc 2.10.0 default_h2fffb23_1000 conda-forge
    libiconv 1.17 hcfcfb64_2 conda-forge
    liblapack 3.9.0 22_win64_mkl conda-forge
    liblapacke 3.9.0 22_win64_mkl conda-forge
    libmamba 1.5.8 h3f09ed1_0 conda-forge
    libmambapy 1.5.8 py310h04f2035_0 conda-forge
    libnpp 11.7.4.75 0 nvidia
    libnpp-dev 11.7.4.75 0 nvidia
    libnvjpeg 11.8.0.2 0 nvidia
    libnvjpeg-dev 11.8.0.2 0 nvidia
    libpng 1.6.43 h19919ed_0 conda-forge
    libsolv 0.7.29 h0ea2cb4_0 conda-forge
    libsqlite 3.45.3 hcfcfb64_0 conda-forge
    libssh2 1.11.0 h7dfc565_0 conda-forge
    libtiff 4.5.0 hf8721a0_2 conda-forge
    libuv 1.48.0 hcfcfb64_0 conda-forge
    libwebp-base 1.4.0 hcfcfb64_0 conda-forge
    libxcb 1.13 hcd874cb_1004 conda-forge
    libxml2 2.12.7 h283a6d9_0 conda-forge
    libzlib 1.2.13 hcfcfb64_5 conda-forge
    lightning 2.2.4 pypi_0 pypi
    lightning-utilities 0.11.2 pypi_0 pypi
    llvmlite 0.42.0 pypi_0 pypi
    lmdb 1.4.1 pypi_0 pypi
    lz4-c 1.9.4 hcfcfb64_0 conda-forge
    lzo 2.10 hcfcfb64_1001 conda-forge
    m2w64-gcc-libgfortran 5.3.0 6 conda-forge
    m2w64-gcc-libs 5.3.0 7 conda-forge
    m2w64-gcc-libs-core 5.3.0 7 conda-forge
    m2w64-gmp 6.1.0 2 conda-forge
    m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge
    markdown 3.6 pypi_0 pypi
    markdown-it-py 3.0.0 pypi_0 pypi
    markupsafe 2.1.5 pypi_0 pypi
    matplotlib 3.9.0 pypi_0 pypi
    mccabe 0.7.0 pypi_0 pypi
    mdit-py-plugins 0.4.1 pypi_0 pypi
    mdurl 0.1.2 pypi_0 pypi
    menuinst 2.0.2 py310h00ffb61_0 conda-forge
    mkl 2024.1.0 h66d3029_692 conda-forge
    mkl-devel 2024.1.0 h57928b3_692 conda-forge
    mkl-include 2024.1.0 h66d3029_692 conda-forge
    mmcv 2.0.1 pypi_0 pypi
    mmdet 3.1.0 pypi_0 pypi
    mmengine 0.10.4 pypi_0 pypi
    mmocr 1.0.1 pypi_0 pypi
    mmpose 1.3.1 pypi_0 pypi
    model-index 0.1.11 pypi_0 pypi
    monai 1.3.0 pypi_0 pypi
    motmetrics 1.4.0 pypi_0 pypi
    msys2-conda-epoch 20160418 1 conda-forge
    multidict 6.0.5 pypi_0 pypi
    munkres 1.1.4 pypi_0 pypi
    mutagen 1.47.0 pypi_0 pypi
    myst-parser 2.0.0 pypi_0 pypi
    networkx 3.3 pypi_0 pypi
    ninja 1.11.1.1 pypi_0 pypi
    numba 0.59.1 pypi_0 pypi
    numpy 1.26.4 py310hf667824_0 conda-forge
    omegaconf 2.3.0 pypi_0 pypi
    opencv-python 4.9.0.80 pypi_0 pypi
    opencv-python-headless 4.9.0.80 pypi_0 pypi
    opendatalab 0.0.10 pypi_0 pypi
    openjpeg 2.5.0 ha2aaf27_2 conda-forge
    openmim 0.3.9 pypi_0 pypi
    openpifpaf 0.13.11 pypi_0 pypi
    openssl 3.3.0 hcfcfb64_0 conda-forge
    openxlab 0.0.11 pypi_0 pypi
    ordered-set 4.1.0 pypi_0 pypi
    packaging 24.0 pyhd8ed1ab_0 conda-forge
    pandas 2.2.2 pypi_0 pypi
    pillow 9.4.0 py310hdbb7713_1 conda-forge
    pip 24.0 pyhd8ed1ab_0 conda-forge
    platformdirs 4.2.2 pyhd8ed1ab_0 conda-forge
    pluggy 1.5.0 pyhd8ed1ab_0 conda-forge
    posetrack21 0.2 pypi_0 pypi
    posetrack21-mot 0.2 pypi_0 pypi
    poseval 0.1.0 pypi_0 pypi
    prices 1.1.1 pypi_0 pypi
    protobuf 4.25.3 pypi_0 pypi
    prtreid 1.3.0 pypi_0 pypi
    psutil 5.9.8 pypi_0 pypi
    pthread-stubs 0.4 hcd874cb_1001 conda-forge
    pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge
    pybind11-abi 4 hd8ed1ab_3 conda-forge
    pyclipper 1.3.0.post5 pypi_0 pypi
    pycocoevalcap 1.2 pypi_0 pypi
    pycocotools 2.0.7 pypi_0 pypi
    pycodestyle 2.11.1 pypi_0 pypi
    pycosat 0.6.6 py310h8d17308_0 conda-forge
    pycparser 2.22 pyhd8ed1ab_0 conda-forge
    pycryptodome 3.20.0 pypi_0 pypi
    pycryptodomex 3.20.0 pypi_0 pypi
    pydantic 2.7.1 pypi_0 pypi
    pydantic-core 2.18.2 pypi_0 pypi
    pyflakes 3.2.0 pypi_0 pypi
    pygments 2.18.0 pypi_0 pypi
    pyparsing 3.1.2 pypi_0 pypi
    pysocks 1.7.1 pyh0701188_6 conda-forge
    pysparkling 0.6.2 pypi_0 pypi
    pytest 8.2.0 pypi_0 pypi
    python 3.10.14 h4de0772_0_cpython conda-forge
    python-bidi 0.4.2 pypi_0 pypi
    python-dateutil 2.9.0.post0 pypi_0 pypi
    python-json-logger 2.0.7 pypi_0 pypi
    python_abi 3.10 4_cp310 conda-forge
    pytorch 1.13.1 py3.10_cuda11.7_cudnn8_0 pytorch
    pytorch-cuda 11.7 h16d0643_5 pytorch
    pytorch-lightning 2.2.4 pypi_0 pypi
    pytorch-mutex 1.0 cuda pytorch
    pytz 2024.1 pypi_0 pypi
    pywin32 306 pypi_0 pypi
    pyyaml 6.0.1 pypi_0 pypi
    rapidfuzz 3.9.0 pypi_0 pypi
    regex 2024.5.15 pypi_0 pypi
    reproc 14.2.4.post0 hcfcfb64_1 conda-forge
    reproc-cpp 14.2.4.post0 h63175ca_1 conda-forge
    requests 2.31.0 pyhd8ed1ab_0 conda-forge
    rich 13.7.1 pypi_0 pypi
    ruamel.yaml 0.18.6 py310h8d17308_0 conda-forge
    ruamel.yaml.clib 0.2.8 py310h8d17308_0 conda-forge
    safetensors 0.4.3 pypi_0 pypi
    scikit-image 0.23.2 pypi_0 pypi
    scikit-learn 1.4.2 pypi_0 pypi
    scikit-video 1.1.11 pypi_0 pypi
    scipy 1.13.0 pypi_0 pypi
    seaborn 0.13.2 pypi_0 pypi
    sentry-sdk 2.2.0 pypi_0 pypi
    setproctitle 1.3.3 pypi_0 pypi
    setuptools 69.5.1 pyhd8ed1ab_0 conda-forge
    shapely 2.0.4 pypi_0 pypi
    six 1.16.0 pypi_0 pypi
    smmap 5.0.1 pypi_0 pypi
    sn-gamestate 0.2.0 pypi_0 pypi
    snowballstemmer 2.2.0 pypi_0 pypi
    soccernet 0.1.60 pypi_0 pypi
    soupsieve 2.5 pypi_0 pypi
    sparse 0.15.1 pypi_0 pypi
    sphinx 7.3.7 pypi_0 pypi
    sphinx-rtd-theme 2.0.0 pypi_0 pypi
    sphinxcontrib-applehelp 1.0.8 pypi_0 pypi
    sphinxcontrib-devhelp 1.0.6 pypi_0 pypi
    sphinxcontrib-htmlhelp 2.0.5 pypi_0 pypi
    sphinxcontrib-jquery 4.1 pypi_0 pypi
    sphinxcontrib-jsmath 1.0.1 pypi_0 pypi
    sphinxcontrib-qthelp 1.0.7 pypi_0 pypi
    sphinxcontrib-serializinghtml 1.1.10 pypi_0 pypi
    tabulate 0.9.0 pypi_0 pypi
    tb-nightly 2.17.0a20240515 pypi_0 pypi
    tbb 2021.12.0 h91493d7_0 conda-forge
    tensorboard-data-server 0.7.2 pypi_0 pypi
    termcolor 2.4.0 pypi_0 pypi
    terminaltables 3.1.10 pypi_0 pypi
    thop 0.1.1-2209072238 pypi_0 pypi
    threadpoolctl 3.5.0 pypi_0 pypi
    tifffile 2024.5.10 pypi_0 pypi
    timm 0.9.16 pypi_0 pypi
    tk 8.6.13 h5226925_1 conda-forge
    tomli 2.0.1 pypi_0 pypi
    torchmetrics 0.10.3 pypi_0 pypi
    torchreid 1.2.4 pypi_0 pypi
    torchvision 0.14.1 pypi_0 pypi
    tqdm 4.66.4 pyhd8ed1ab_0 conda-forge
    track-bench-track 1.0.1 pypi_0 pypi
    trackeval 1.0.dev1 pypi_0 pypi
    tracklab 1.1.2 pypi_0 pypi
    tracklab-calibration 1.0.2 pypi_0 pypi
    truststore 0.8.0 pyhd8ed1ab_0 conda-forge
    typing_extensions 4.11.0 pyha770c72_0 conda-forge
    tzdata 2024.1 pypi_0 pypi
    ucrt 10.0.22621.0 h57928b3_0 conda-forge
    ultralytics 8.0.61 pypi_0 pypi
    urllib3 2.2.1 pyhd8ed1ab_0 conda-forge
    vc 14.3 hcf57466_18 conda-forge
    vc14_runtime 14.38.33130 h82b7239_18 conda-forge
    vs2015_runtime 14.38.33130 hcb4865c_18 conda-forge
    wandb 0.17.0 pypi_0 pypi
    websockets 12.0 pypi_0 pypi
    werkzeug 3.0.3 pypi_0 pypi
    wheel 0.43.0 pyhd8ed1ab_1 conda-forge
    win_inet_pton 1.1.0 pyhd8ed1ab_6 conda-forge
    xmltodict 0.13.0 pypi_0 pypi
    xorg-libxau 1.0.11 hcd874cb_0 conda-forge
    xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge
    xtcocotools 1.14.3 pypi_0 pypi
    xz 5.2.6 h8d14728_0 conda-forge
    yacs 0.1.8 pypi_0 pypi
    yaml-cpp 0.8.0 h63175ca_0 conda-forge
    yapf 0.40.2 pypi_0 pypi
    yarl 1.9.4 pypi_0 pypi
    yt-dlp 2024.4.9 pypi_0 pypi
    zipp 3.18.2 pypi_0 pypi
    zstandard 0.22.0 py310h0009e47_0 conda-forge

  2. The only changes I performed locally are in soccernet.yml file to reduce batch size, define folder paths, and also in tracker_state.py to include ", force_zip64=True" in line 276).

  3. I think it is not tracking as I can see in the output video. Also in another test with a input reduced version of SNSG-021 input file(150 images instead of 750), and modifying Labels-GameState.json accordingly, the output video is not showing any tracking output (players nor pitch lines).

Actually I am planning to keep trying new tests with this reduced input to see if I manage to avoid some of the error messages I received above.

A) The first set of warnings, I can see also in your explanotary video (Youtube "SoccerNet 2024 Live Tutorials - ft. Vladimir Somers, Victor Joos, and Jan Held"), so I guess they are not criticals:
" Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth
The model and loaded state dict do not match exactly
unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std
05/27 17:45:15 - mmengine - WARNING - Failed to search registry with scope "mmocr" in the "function" registry tree. As a workaround, the current "function" registry in "mmengine" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmocr" is a correct scope, or whether the registry is initialized.
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth
The model and loaded state dict do not match exactly
unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth
The model and loaded state dict do not match exactly
unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth
The model and loaded state dict do not match exactly
unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std".

B) My doubt is about :"** The following layers are discarded due to unmatched keys or layer size: ['global_identity_classifier.classifier.weight', 'background_identity_classifier.classifier.weight', 'foreground_identity_classifier.classifier.weight',
'concat_parts_identity_classifier.classifier.weight', 'parts_identity_classifier.0.classifier.weight']
Building train transforms ..." and how avoding it.

Please note in the output folder REID/0 folder is empty after running every test!!

C) The final warnings. "INFO Saved state at : X:\Pycharmproj\Sngamestate\sn-gamestate\outputs\sn-gamestate\2024-05-27\17-44-38\states\sn-gamestate.pklz main.py:66
[W C:\cb\pytorch_1000000000000\work\torch\csrc\CudaIPCTypes.cpp:95] Producer process tried to deallocate over 1000 memory blocks referred by consumer processes. Deallocation might be significantly slowed down. We assume it will never going to be the case, but if it is, please file but to https://github.com/pytorch/pytorch
[W C:\cb\pytorch_1000000000000\work\torch\csrc\CudaIPCTypes.cpp:15] Producer process has been terminated before all shared CUDA tensors released. See Note [Sharing CUDA tensors]
[W CUDAGuardImpl.h:46] Warning: CUDA warning: driver shutting down (function uncheckedGetDevice)
...." are displayed after GS-HOTA calculation so I guess not important for tracking.

Cheers

@VlSomers
Copy link
Collaborator

Hi @frj555 , Can you make sure your "trackeval" library is up to date? you should install the latest version from "https://github.com/SoccerNet/sn-trackeval". Also, can you share the current version of your dataset? I should be the latest one, i.e. "1.3", you can check this number at the beginning one of the .json annotation file "Labels-GameState.json". And what do you mean by "modifying Labels-GameState.json accordingly"? If you want to perform tracking on less images, you can use the "nframes: 150" config next to the "nvid: 1" config below the "dataset" key.

@VlSomers
Copy link
Collaborator

About error B, this does not explain why you don't see any detection or tracking result. Error C is indeed strange. In "tracklab/main.py", could you put a breakpoint after "tracking_engine.track_dataset()", on the line "evaluate(cfg, evaluator, tracker_state)". There, you can have a look at what is inside the "tracker_state.detections_pred" dataframe. I should contain detections, but from what I see with the error you get, it seems this dataframe is empty for you. It would be helpful to know if this dataframe is empty or not after tracking is done.

@frj555
Copy link
Author

frj555 commented May 29, 2024

Hi.

  1. I have just update trackeval library with the latest version from the repositoty in case.
  2. Also I was using version 1.3. in labels.-
  3. Also with option=nframes 200 (first 150 frames before match kick-off, no movement in players) and using originla SNGS-021 folder and labels.

"modifying Labels-GameState.json accordingly": I mean keeping info only from image 151 to 300, and changing labels .json file info to:
{
"info": {
"version": "1.3",
"game_id": "2",
"id": "021",
"num_tracklets": "25",
"action_position": "82617",
"action_class": "Kick-off",
"visibility": "visible",
"game_time_start": "1 - 01:22",
"game_time_stop": "1 - 01:28",
"clip_start": "82000",
"clip_stop": "88000",
"name": "SNGS-021",
"im_dir": "img1",
"frame_rate": 25,
"seq_length": 150,
"im_ext": ".jpg"
},

@frj555
Copy link
Author

frj555 commented May 31, 2024

Starting again from scratch, and reviewing (tracklab) conda environment I found Error messages reagarding trackeval and mmcv.

"ERROR: Ignored the following versions that require a different python version: 0.0.1 Requires-Python ==3.7.0
ERROR: Could not find a version that satisfies the requirement trackeval (unavailable) (from tracklab) (from versions: none)
ERROR: No matching distribution found for trackeval (unavailable)
bash: mim: command not found"
when running
pip install -e .
pip install -e ../tracklab
mim install mmcv==2.0.1

at conda environment(tracklab).

Many thanks for your time

@victorjoos
Copy link
Collaborator

Hi frj555,

Could you update tracklab to the latest version ? Some changes made in sn-trackeval changed the way we had to specify it as a dependency. The "mim: command not found" is probably just an error due to the fact that the first installation (which installs mim) did not succeed.

@frj555
Copy link
Author

frj555 commented Jun 1, 2024

please, can you advice how proceeding to update? I have just relaunched the project with the last git clones as per:

"mkdir soccernet
cd soccernet
git clone https://github.com/SoccerNet/sn-gamestate.git
git clone https://github.com/TrackingLaboratory/tracklab.git"

and then install dependencies as per your instructions.

Then conda environment and working in Pycharm.

This is supposed to be tracklab latest version??

Many thanks

@victorjoos
Copy link
Collaborator

Yes, this should indeed give you the latest version of tracklab.

Do you still have errors when running any of the installation commands ? ("pip install -e ." or "pip install -e ../tracklab" or "mim install ....")

@frj555
Copy link
Author

frj555 commented Jun 3, 2024 via email

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants