-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstatistical_analysis.py
368 lines (304 loc) · 16.4 KB
/
statistical_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Libraries
import matplotlib.pyplot as plt
import pydicom
import numpy as np
import os
import tempfile
import pandas as pd
import seaborn as sns
#%% Data Paths
# !!! Specify the Python directory to the path that contains data folders (COVID-171, CAP-60, Normal-76)
# !!! You can also modify the following paths based on your custom data structure
dataset_path_covid = r"./COVID-19 Cases/"
dataset_path_noncovid = r"./Cap Cases/"
dataset_path_normal = r"./Normal Cases/"
# Importing the lobe-level labels
y_lobe = np.load('./Lobe-level-labels.npy')
#%% Initializing the csv file
dpath = []
image_paths = []
csv_data = pd.DataFrame({'Diagnosis' : [],'Folder':[],'Patient Gender' : [],'Patient Age': [],
'Slice Thickness':[], 'Slices':[], 'XRayTubeCurrent':[], 'KVP':[],
'Exposure Time':[], 'Study Date':[], 'Date of Last Calibration':[],
'Distance Source to Detector':[], 'Distance Source to Patient':[],
'Rows':[],'Columns':[],'Spiral Pitch Factor':[]})
slice_size = {}
# COVID-19
all_paths = sorted([x for x in os.listdir(dataset_path_covid) if not x.startswith('.')])
for patient_number, path in enumerate(all_paths):
subpath = sorted([x for x in os.listdir(dataset_path_covid+path) if not x.startswith('.')])
slice_numbers = len(subpath) #number of slices
dataset = pydicom.dcmread(os.path.join(dataset_path_covid+path, subpath[0])) #read a sample image
#information
patient_csv_data = {}
patient_csv_data['Diagnosis'] = 'COVID-19'
patient_csv_data['Folder'] = path
patient_csv_data['Patient Gender'] = [dataset.PatientSex]
patient_csv_data['Patient Age'] = [dataset.PatientAge]
patient_csv_data['Slice Thickness'] = [dataset.SliceThickness]
patient_csv_data['Slices'] = [slice_numbers]
patient_csv_data['XRayTubeCurrent'] = [dataset.XRayTubeCurrent]
patient_csv_data['KVP'] = [dataset.KVP]
patient_csv_data['Exposure Time'] = [dataset.ExposureTime]
patient_csv_data['Date of Last Calibration'] = [dataset.DateOfLastCalibration]
patient_csv_data['Distance Source to Detector'] = [dataset.DistanceSourceToDetector]
patient_csv_data['Distance Source to Patient'] = [dataset.DistanceSourceToPatient]
patient_csv_data['Rows'] = [dataset.Rows]
patient_csv_data['Columns'] = [dataset.Columns]
if 'SpiralPitchFactor' in dataset:
patient_csv_data['Spiral Pitch Factor'] = [dataset.SpiralPitchFactor]
else:
patient_csv_data['Spiral Pitch Factor'] = np.nan
# updating csv file
patient_csv_dataframe = pd.DataFrame(patient_csv_data)
csv_data = csv_data.append(patient_csv_dataframe, ignore_index = True)
# csv_data.to_csv('all_patients.csv')
# Non COVID (Labeled)
all_paths = sorted([x for x in os.listdir(dataset_path_noncovid) if not x.startswith('.')])
for patient_number, path in enumerate(all_paths):
subpath = sorted([x for x in os.listdir(dataset_path_noncovid+path) if not x.startswith('.')])
slice_numbers = len(subpath) #number of slices
dataset = pydicom.dcmread(os.path.join(dataset_path_noncovid+path, subpath[0])) #read a sample image
slice_size[path] = slice_numbers
#information
patient_csv_data = {}
patient_csv_data['Diagnosis'] = 'CAP'
patient_csv_data['Folder'] = path
patient_csv_data['Patient Gender'] = [dataset.PatientSex]
patient_csv_data['Patient Age'] = [dataset.PatientAge]
patient_csv_data['Slice Thickness'] = [dataset.SliceThickness]
patient_csv_data['Slices'] = [slice_numbers]
patient_csv_data['XRayTubeCurrent'] = [dataset.XRayTubeCurrent]
patient_csv_data['KVP'] = [dataset.KVP]
patient_csv_data['Exposure Time'] = [dataset.ExposureTime]
patient_csv_data['Date of Last Calibration'] = [dataset.DateOfLastCalibration]
patient_csv_data['Distance Source to Detector'] = [dataset.DistanceSourceToDetector]
patient_csv_data['Distance Source to Patient'] = [dataset.DistanceSourceToPatient]
patient_csv_data['Rows'] = [dataset.Rows]
patient_csv_data['Columns'] = [dataset.Columns]
if 'SpiralPitchFactor' in dataset:
patient_csv_data['Spiral Pitch Factor'] = [dataset.SpiralPitchFactor]
else:
patient_csv_data['Spiral Pitch Factor'] = np.nan
#updating csv file
patient_csv_dataframe = pd.DataFrame(patient_csv_data)
csv_data = csv_data.append(patient_csv_dataframe, ignore_index = True)
# Normal
all_paths = sorted([x for x in os.listdir(dataset_path_normal) if not x.startswith('.')])
for patient_number, path in enumerate(all_paths):
subpath = sorted([x for x in os.listdir(dataset_path_normal+path) if not x.startswith('.')])
slice_numbers = len(subpath) #number of slices
dataset = pydicom.dcmread(os.path.join(dataset_path_normal+path, subpath[0])) #read a sample image
#information
patient_csv_data = {}
patient_csv_data['Diagnosis'] = 'Normal'
patient_csv_data['Folder'] = path
patient_csv_data['Patient Gender'] = [dataset.PatientSex]
patient_csv_data['Patient Age'] = [dataset.PatientAge]
patient_csv_data['Slice Thickness'] = [dataset.SliceThickness]
patient_csv_data['Slices'] = [slice_numbers]
patient_csv_data['XRayTubeCurrent'] = [dataset.XRayTubeCurrent]
patient_csv_data['KVP'] = [dataset.KVP]
patient_csv_data['Exposure Time'] = [dataset.ExposureTime]
patient_csv_data['Date of Last Calibration'] = [dataset.DateOfLastCalibration]
patient_csv_data['Distance Source to Detector'] = [dataset.DistanceSourceToDetector]
patient_csv_data['Distance Source to Patient'] = [dataset.DistanceSourceToPatient]
patient_csv_data['Rows'] = [dataset.Rows]
patient_csv_data['Columns'] = [dataset.Columns]
if 'SpiralPitchFactor' in dataset:
patient_csv_data['Spiral Pitch Factor'] = [dataset.SpiralPitchFactor]
else:
patient_csv_data['Spiral Pitch Factor'] = np.nan
#updating csv file
patient_csv_dataframe = pd.DataFrame(patient_csv_data)
csv_data = csv_data.append(patient_csv_dataframe, ignore_index = True)
# csv_data.to_csv('stats.csv')
#%% Additional columns
current = csv_data['XRayTubeCurrent'].iloc[:].values
time = csv_data['Exposure Time'].iloc[:].apply(lambda x : int(x)).values
csv_data['Spiral Pitch Factor'].fillna(value = csv_data['Spiral Pitch Factor'].mean(),inplace=True)
pitch = csv_data['Spiral Pitch Factor'].iloc[:].values
csv_data['mAs'] = (current*time/1000)/pitch
# Numerical values for Ages
csv_data['Age'] = csv_data['Patient Age'].iloc[:].apply(lambda x : int(x[1:3])).values
# csv files seperated by the disease type
covid_data = csv_data[csv_data['Diagnosis'] == 'COVID-19']
pneumonia_data = csv_data[csv_data['Diagnosis'] == 'CAP']
normal_data = csv_data[csv_data['Diagnosis'] == 'Normal']
#%% Statistical Analysis
# !!! All save functions are commented.
print('Statistical Analysis\n')
# Total Analysis
Gender = csv_data['Patient Gender'].iloc[:].values
current = csv_data['XRayTubeCurrent'].iloc[:].apply(lambda x : int(x)).values
time = csv_data['Exposure Time'].iloc[:].apply(lambda x : int(x)).values
pitch = csv_data['Spiral Pitch Factor'].iloc[:].values
age = csv_data['Patient Age'].iloc[:].apply(lambda x : int(x[1:3])).values
kvp = csv_data['KVP'].iloc[:].values
print('Total:')
print('Males: {m} , Females: {f}'.format(m = np.sum(Gender=='M'), f =np.sum(Gender=='F')))
print('Age : {m:.2f} +/- {s:.2f}'.format(m = np.mean(age), s =np.std(age)))
print('X-ray Tube Current: ({a},{b})'.format(a = np.min(current), b =np.max(current)))
print('KVP: ({a},{b})'.format(a = np.min(kvp), b = np.max(kvp)))
print('Exposure Time: ({a},{b})'.format(a = np.min(time), b = np.max(time)))
print('Exposure (mAs) min/max : ({a},{b})'.format(a = np.min(current*time/1000/pitch), b =np.max(current*time/1000/pitch)))
print('Exposure (mAs) mean/std : ({a:.2f},{b:.2f})'.format(a = np.mean(current*time/1000/pitch), b =np.std(current*time/1000/pitch)))
print('Pitch min/max : ({a},{b})'.format(a = np.min(pitch), b =np.max(pitch)))
print('-----------------------------')
# COVID-19 Analysis
Gender = covid_data['Patient Gender'].iloc[:].values
current = covid_data['XRayTubeCurrent'].iloc[:].apply(lambda x : int(x)).values
time = covid_data['Exposure Time'].iloc[:].apply(lambda x : int(x)).values
pitch = covid_data['Spiral Pitch Factor'].iloc[:].values
age = covid_data['Patient Age'].iloc[:].apply(lambda x : int(x[1:3])).values
kvp = covid_data['KVP'].iloc[:].values
print('COVID-19:')
print('Males: {m} , Females: {f}'.format(m = np.sum(Gender=='M'), f =np.sum(Gender=='F')))
print('Age : {m:.2f} +/- {s:.2f}'.format(m = np.mean(age), s =np.std(age)))
print('X-ray Tube Current: ({a},{b})'.format(a = np.min(current), b =np.max(current)))
print('KVP: ({a},{b})'.format(a = np.min(kvp), b = np.max(kvp)))
print('Exposure Time: ({a},{b})'.format(a = np.min(time), b = np.max(time)))
print('Exposure (mAs) min/max : ({a},{b})'.format(a = np.min(current*time/1000/pitch), b =np.max(current*time/1000/pitch)))
print('Exposure (mAs) mean/std : ({a:.2f},{b:.2f})'.format(a = np.mean(current*time/1000/pitch), b =np.std(current*time/1000/pitch)))
print('-----------------------------')
# CAP Analysis
Gender = pneumonia_data['Patient Gender'].iloc[:].values
current = pneumonia_data['XRayTubeCurrent'].iloc[:].apply(lambda x : int(x)).values
time = pneumonia_data['Exposure Time'].iloc[:].apply(lambda x : int(x)).values
pitch = pneumonia_data['Spiral Pitch Factor'].iloc[:].values
age = pneumonia_data['Patient Age'].iloc[:].apply(lambda x : int(x[1:3])).values
kvp = pneumonia_data['KVP'].iloc[:].values
print('CAP:')
print('Males: {m} , Females: {f}'.format(m = np.sum(Gender=='M'), f =np.sum(Gender=='F')))
print('Age : {m:.2f} +/- {s:.2f}'.format(m = np.mean(age), s =np.std(age)))
print('X-ray Tube Current: ({a},{b})'.format(a = np.min(current), b =np.max(current)))
print('KVP: ({a},{b})'.format(a = np.min(kvp), b = np.max(kvp)))
print('Exposure Time: ({a},{b})'.format(a = np.min(time), b = np.max(time)))
print('Exposure (mAs) min/max : ({a},{b})'.format(a = np.min(current*time/1000/pitch), b =np.max(current*time/1000/pitch)))
print('Exposure (mAs) mean/std : ({a:.2f},{b:.2f})'.format(a = np.mean(current*time/1000/pitch), b =np.std(current*time/1000/pitch)))
print('-----------------------------')
# Normal Analysis
Gender = normal_data['Patient Gender'].iloc[:].values
current = normal_data['XRayTubeCurrent'].iloc[:].apply(lambda x : int(x)).values
time = normal_data['Exposure Time'].iloc[:].apply(lambda x : int(x)).values
pitch = normal_data['Spiral Pitch Factor'].iloc[:].values
age = normal_data['Patient Age'].iloc[:].apply(lambda x : int(x[1:3])).values
kvp = normal_data['KVP'].iloc[:].values
print('Normal:')
print('Males: {m} , Females: {f}'.format(m = np.sum(Gender=='M'), f =np.sum(Gender=='F')))
print('Age : {m:.2f} +/- {s:.2f}'.format(m = np.mean(age), s =np.std(age)))
print('X-ray Tube Current: ({a},{b})'.format(a = np.min(current), b =np.max(current)))
print('KVP: ({a},{b})'.format(a = np.min(kvp), b = np.max(kvp)))
print('Exposure Time: ({a},{b})'.format(a = np.min(time), b = np.max(time)))
print('Exposure (mAs) min/max : ({a},{b})'.format(a = np.min(current*time/1000/pitch), b =np.max(current*time/1000/pitch)))
print('Exposure (mAs) mean/std : ({a:.2f},{b:.2f})'.format(a = np.mean(current*time/1000/pitch), b =np.std(current*time/1000/pitch)))
print('-----------------------------')
# Visualization
plt.figure()
sns_plot = sns.violinplot(x = 'Diagnosis',y = 'mAs',data = csv_data, split = False)
plt.ylabel('Exposure (mAs)')
plt.xlabel('Disease')
fig = sns_plot.get_figure()
# fig.savefig("mas.png",dpi=300)
plt.figure()
sns_plot = sns.countplot(x='Diagnosis', data = csv_data, hue='Patient Gender')
plt.ylabel('Number of Cases')
plt.xlabel('Disease')
fig = sns_plot.get_figure()
# fig.savefig("sex.png",dpi=300)
plt.figure()
sns_plot = sns.boxplot(x = 'Diagnosis',y = 'Age',data = csv_data)
plt.ylabel('Age (year)')
plt.xlabel('Disease')
fig = sns_plot.get_figure()
# fig.savefig("age.png",dpi=300)
#%% Lobes and Slices-Level labels
total_infection = np.sum((np.sum(y_lobe,axis=2) >0) *1,axis=-1)
Y = np.sum(y_lobe,axis=1)
columns = ['LLL','LUL','RLL','RML','RUL']
lobe_data = pd.DataFrame(data = Y, columns=columns)
# Additional columns
# Total Infection
lobe_data['Total Infection'] = total_infection
# Diagnosis
n_covid_label = 54
lobe_data['Diagnosis'] = np.zeros((Y.shape[0],1))
lobe_data['Diagnosis'].iloc[0:n_covid_label] = 'COVID-19'
lobe_data['Diagnosis'].iloc[n_covid_label:] = 'CAP'
## Extracting Slice numbers/Ages from csv_data
# the following numbers represent the case indices in the main dataset
slice_numbers_covid1 = csv_data['Slices'].iloc[0:49]
slice_numbers_covid2 = csv_data['Slices'].iloc[[49,50,51,52,53]]
slice_numbers_noncovid = csv_data['Slices'].iloc[169:194]
slice_numbers_lobes = pd.concat([slice_numbers_covid1,slice_numbers_covid2,slice_numbers_noncovid],axis = 0).iloc[:].values
age_covid1 = csv_data['Age'].iloc[0:49]
age_covid2 = csv_data['Age'].iloc[[49,50,51,52,53]]
age_noncovid = csv_data['Age'].iloc[169:194]
age_lobes = pd.concat([age_covid1,age_covid2,age_noncovid],axis = 0).iloc[:].values
lobe_data['Slice Numbers'] = slice_numbers_lobes
lobe_data['Infection Ratio'] = lobe_data['Total Infection']/lobe_data['Slice Numbers']
lobe_data['Age'] = age_lobes
# Lobe ratio
lobe_data['LLL Ratio'] = lobe_data['LLL']/lobe_data['Slice Numbers']
lobe_data['LUL Ratio'] = lobe_data['LUL']/lobe_data['Slice Numbers']
lobe_data['RLL Ratio'] = lobe_data['RLL']/lobe_data['Slice Numbers']
lobe_data['RML Ratio'] = lobe_data['RML']/lobe_data['Slice Numbers']
lobe_data['RUL Ratio'] = lobe_data['RUL']/lobe_data['Slice Numbers']
#%% Lobes Visualization and Statistics
print('Infection Analysis:')
covid_hist = lobe_data[lobe_data['Diagnosis'] == 'COVID-19']['Total Infection']
pn_hist = lobe_data[lobe_data['Diagnosis'] == 'CAP']['Total Infection']
covid_slices = lobe_data[lobe_data['Diagnosis'] == 'COVID-19']['Slice Numbers']
pn_slices = lobe_data[lobe_data['Diagnosis'] == 'CAP']['Slice Numbers']
normal_slices = csv_data['Slices'].iloc[229::]
print('\n')
print('COVID Slices with infection: ',sum(covid_hist))
print('CAP Slices with infection: ',sum(pn_hist))
print('COVID Slices without infection: ',sum(covid_slices)-sum(covid_hist))
print('CAP Slices without infection: ',sum(pn_slices)-sum(pn_hist))
print('All Infected Slices: ',sum(covid_hist)+sum(pn_hist))
print('All non-Infected Slices: ',sum(normal_slices)+sum(covid_slices)+sum(pn_slices)-sum(covid_hist)-sum(pn_hist))
covid_rate = lobe_data[lobe_data['Diagnosis'] == 'COVID-19']['Infection Ratio']
pn_rate = lobe_data[lobe_data['Diagnosis'] == 'CAP']['Infection Ratio']
# Total Infection Ratio Histogram
plt.figure()
sns_plot = sns.distplot(covid_rate, bins = 8, kde = False, rug = False, hist = True, color = 'red',label='COVID-19')
sns_plot = sns.distplot(pn_rate, bins = 8, kde = False, rug = False, hist = True, color = 'blue', label='CAP')
plt.legend()
plt.ylabel('Number of Cases')
plt.xlabel('Infection Ratio')
fig = sns_plot.get_figure()
# fig.savefig("hist.png",dpi=300)
# Total Infection Ratio Boxplot
plt.figure()
sns_plot = sns.boxplot(x = 'Diagnosis',y = 'Infection Ratio',data = lobe_data)
fig = sns_plot.get_figure()
# fig.savefig("IR.png",dpi=300)
# Barplot for the lobe infection ratio
grouped_lobe = lobe_data.groupby('Diagnosis').mean()[['LLL Ratio','LUL Ratio','RLL Ratio','RML Ratio','RUL Ratio']]
plt.figure()
sns_plot = grouped_lobe.plot.bar()
plt.xlabel('')
plt.ylabel('Average Infection Ratio')
fig = sns_plot.get_figure()
# fig.savefig("Figure_9.png",dpi=300,bbox_inches = 'tight')
print('\n')
print('COVID-19 Infection Ratio: ({a:.3f},{b:.3f})'.format(a = np.min(covid_rate), b = np.max(covid_rate)))
print('CAP Infection Ratio: ({a:.3f},{b:.3f})'.format(a = np.min(pn_rate), b = np.max(pn_rate)))
# lobe stats
covid_lobe = lobe_data[lobe_data['Diagnosis'] == 'COVID-19']
pn_lobe = lobe_data[lobe_data['Diagnosis'] == 'CAP']
print('\n')
print('COVID slices with LLL infection: ',int(sum(covid_lobe['LLL'])))
print('COVID slices with LUL infection: ',int(sum(covid_lobe['LUL'])))
print('COVID slices with RLL infection: ',int(sum(covid_lobe['RLL'])))
print('COVID slices with RML infection: ',int(sum(covid_lobe['RML'])))
print('COVID slices with RUL infection: ',int(sum(covid_lobe['RUL'])))
print('\n')
print('CAP slices with LLL infection: ',int(sum(pn_lobe['LLL'])))
print('CAP slices with LUL infection: ',int(sum(pn_lobe['LUL'])))
print('CAP slices with RLL infection: ',int(sum(pn_lobe['RLL'])))
print('CAP slices with RML infection: ',int(sum(pn_lobe['RML'])))
print('CAP slices with RUL infection: ',int(sum(pn_lobe['RUL'])))