We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Here is a simple ODE that stops when y ~ 0.5:
y ~ 0.5
using ModelingToolkit, OrdinaryDiffEq, ForwardDiff using ModelingToolkit: t_nounits as t, D_nounits as D @variables x(t) y(t) stop!(integrator, _, _, _) = terminate!(integrator) @named sys = ODESystem([ D(x) ~ 1.0 D(y) ~ 1.0 ], t; initialization_eqs = [ y ~ 0.0 ], continuous_events = [ [y ~ 0.5] => (stop!, [y], [], [], nothing) ]) sys = structural_simplify(sys) prob0 = ODEProblem(sys, [x => NaN], (0.0, 1.0), []) # final_x(x0) is equivalent to x0 + 0.5 function final_x(x0) prob = remake(prob0; u0 = [x => x0]) sol = solve(prob) return sol[x][end] end final_x(0.3) # should be 0.8 ForwardDiff.derivative(final_x, 0.3) # should be 1.0
On #master, the last line fails with
#master
ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{typeof(final_x), Float64}, Float64, 1}) The type `Float64` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat @ Base rounding.jl:265 (::Type{T})(::T) where T<:Number @ Core boot.jl:900 Float64(::Float16) @ Base float.jl:342 ... Stacktrace: [1] convert(::Type{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{typeof(final_x), Float64}, Float64, 1}) @ Base .\number.jl:7 [2] setindex!(A::Vector{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{typeof(final_x), Float64}, Float64, 1}, i::Int64) @ Base .\array.jl:987 [3] set_parameter!(p::MTKParameters{…}, val::ForwardDiff.Dual{…}, pidx::ModelingToolkit.ParameterIndex{…}) @ ModelingToolkit C:\Users\herma\.julia\dev\ModelingToolkit\src\systems\parameter_buffer.jl:373 [4] set_parameter!(sys::NonlinearProblem{…}, val::ForwardDiff.Dual{…}, idx::ModelingToolkit.ParameterIndex{…}) @ SymbolicIndexingInterface C:\Users\herma\.julia\packages\SymbolicIndexingInterface\MHJDc\src\value_provider_interface.jl:67 [5] (::SymbolicIndexingInterface.SetParameterIndex{…})(prob::NonlinearProblem{…}, val::ForwardDiff.Dual{…}) @ SymbolicIndexingInterface C:\Users\herma\.julia\packages\SymbolicIndexingInterface\MHJDc\src\parameter_indexing.jl:678 [6] (::SymbolicIndexingInterface.ParameterHookWrapper{…})(prob::NonlinearProblem{…}, args::ForwardDiff.Dual{…}) @ SymbolicIndexingInterface C:\Users\herma\.julia\packages\SymbolicIndexingInterface\MHJDc\src\parameter_indexing.jl:646 [7] (::SymbolicIndexingInterface.var"#44#45"{…})(s!::SymbolicIndexingInterface.ParameterHookWrapper{…}, v::ForwardDiff.Dual{…}) @ SymbolicIndexingInterface C:\Users\herma\.julia\packages\SymbolicIndexingInterface\MHJDc\src\parameter_indexing.jl:695 [8] (::Base.var"#4#5"{…})(a::Tuple{…}) @ Base .\generator.jl:37 [9] iterate @ .\generator.jl:48 [inlined] [10] collect @ .\array.jl:791 [inlined] [11] map @ .\abstractarray.jl:3495 [inlined] [12] MultipleSetters @ C:\Users\herma\.julia\packages\SymbolicIndexingInterface\MHJDc\src\parameter_indexing.jl:695 [inlined] [13] (::ModelingToolkit.UpdateInitializeprob{…})(initializeprob::NonlinearProblem{…}, prob::ODEProblem{…}) @ ModelingToolkit C:\Users\herma\.julia\dev\ModelingToolkit\src\systems\problem_utils.jl:458 [14] get_initial_values(prob::ODEProblem{…}, valp::ODEProblem{…}, f::Function, alg::SciMLBase.OverrideInit{…}, iip::Val{…}; nlsolve_alg::Nothing, abstol::Nothing, reltol::Nothing, kwargs::@Kwargs{}) @ SciMLBase C:\Users\herma\.julia\packages\SciMLBase\XzPx0\src\initialization.jl:234 [15] get_initial_values(prob::ODEProblem{…}, valp::ODEProblem{…}, f::Function, alg::SciMLBase.OverrideInit{…}, iip::Val{…}) @ SciMLBase C:\Users\herma\.julia\packages\SciMLBase\XzPx0\src\initialization.jl:221 [16] remake(prob::ODEProblem{…}; f::Function, u0::Vector{…}, tspan::Tuple{…}, p::MTKParameters{…}, kwargs::Missing, interpret_symbolicmap::Bool, build_initializeprob::Bool, use_defaults::Bool, lazy_initialization::Nothing, _kwargs::@Kwargs{}) @ SciMLBase C:\Users\herma\.julia\packages\SciMLBase\XzPx0\src\remake.jl:263 [17] get_concrete_problem(prob::ODEProblem{…}, isadapt::Bool; kwargs::@Kwargs{…}) @ DiffEqBase C:\Users\herma\.julia\packages\DiffEqBase\R2Vjs\src\solve.jl:1223 [18] get_concrete_problem @ C:\Users\herma\.julia\packages\DiffEqBase\R2Vjs\src\solve.jl:1209 [inlined] [19] solve_up(::ODEProblem{…}, ::Nothing, ::Vector{…}, ::MTKParameters{…}; kwargs::@Kwargs{}) @ DiffEqBase C:\Users\herma\.julia\packages\DiffEqBase\R2Vjs\src\solve.jl:1105 [20] solve_up @ C:\Users\herma\.julia\packages\DiffEqBase\R2Vjs\src\solve.jl:1101 [inlined] [21] solve(::ODEProblem{…}; sensealg::Nothing, u0::Nothing, p::Nothing, wrap::Val{…}, kwargs::@Kwargs{}) @ DiffEqBase C:\Users\herma\.julia\packages\DiffEqBase\R2Vjs\src\solve.jl:1038 [22] solve(::ODEProblem{…}) @ DiffEqBase C:\Users\herma\.julia\packages\DiffEqBase\R2Vjs\src\solve.jl:1028 [23] final_x(x0::ForwardDiff.Dual{ForwardDiff.Tag{typeof(final_x), Float64}, Float64, 1}) @ Main c:\Users\herma\.julia\dev\SymBoltz\bug.jl:94 [24] derivative(f::typeof(final_x), x::Float64) @ ForwardDiff C:\Users\herma\.julia\packages\ForwardDiff\UBbGT\src\derivative.jl:14
However, the code runs if
initialization_eqs = [y ~ 0.0]
defaults = [y => 0.0]
continuous_events = [...]
The text was updated successfully, but these errors were encountered:
This looks similar to #3318
Sorry, something went wrong.
No branches or pull requests
Here is a simple ODE that stops when
y ~ 0.5
:On
#master
, the last line fails withHowever, the code runs if
initialization_eqs = [y ~ 0.0]
is replaced withdefaults = [y => 0.0]
, orcontinuous_events = [...]
is removed altogether (with different results, of course).The text was updated successfully, but these errors were encountered: