-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathinfer.py
218 lines (171 loc) · 8.84 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import warnings
import os
import importlib
import argparse
from glob import glob
import face_alignment
from torchvision import transforms
from PIL import Image
import numpy as np
import torch
from pytorch3d.io import save_obj
import torch.nn.functional as F
import torch.nn as nn
from MODNet.src.models.modnet import MODNet
from data_utils import calc_ffhq_alignment
from src.rome import ROME
from src.utils import args as args_utils
from src.utils.processing import process_black_shape, prepare_input_data, tensor2image
from src.utils.visuals import obtain_modnet_mask, mask_errosion
warnings.filterwarnings("ignore")
class Infer(object):
def __init__(self, args):
super(Infer, self).__init__()
# Initialize and apply general options
torch.manual_seed(args.random_seed)
self.args = args
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize model
if args.verbose:
print('Initialize model.')
self.model = ROME(args).eval().to(self.device)
self.image_size = 256
self.source_transform = transforms.Compose([
# transforms.Resize((256, 256)),
transforms.ToTensor(),
])
# Load pre-trained weights
if args.model_checkpoint:
ckpt_loaded = torch.load(args.model_checkpoint, map_location='cpu')
missing_keys, unexpected_keys = self.model.load_state_dict(ckpt_loaded, strict=False)
self.setup_modnet()
self.mask_hard_threshold = 0.5
self.data_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
def setup_modnet(self):
pretrained_ckpt = self.args.modnet_path
modnet = nn.DataParallel(MODNet(backbone_pretrained=False))
modnet.load_state_dict(torch.load(pretrained_ckpt, map_location='cpu'))
self.modnet = modnet.eval().to(self.device)
self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D,
flip_input=False, device='cuda' if torch.cuda.is_available() else 'cpu')
def process_source_for_input_dict(self, source_img: Image, data_transform, crop_center=False):
data_dict = {}
source_pose = self.fa.get_landmarks_from_image(np.asarray(source_img))[0]
if crop_center or source_img.size[0] != source_img.size[1]:
pose = source_pose
center = ((pose.min(0) + pose.max(0)) / 2).round().astype(int)
size = int(max(pose[:, 0].max() - pose[:, 0].min(), pose[:, 1].max() - pose[:, 1].min()))
center[1] -= size // 6
source_img = source_img.crop((center[0] - size, center[1] - size, center[0] + size, center[1] + size))
source_img = source_img.resize((self.image_size, self.image_size), Image.ANTIALIAS)
data_dict['source_img'] = data_transform(source_img)[None].to(self.device)
pred_mask = obtain_modnet_mask(data_dict['source_img'][0], self.modnet, ref_size=512)[0]
data_dict['source_mask'] = torch.from_numpy(pred_mask).float().to(self.device).unsqueeze(0)[None]
data_dict['source_keypoints'] = torch.from_numpy(self.fa.get_landmarks_from_image(np.asarray(source_img))[0])[
None]
if (data_dict['source_mask'].shape) == 3:
data_dict['source_mask'] = data_dict['source_mask'][..., -1]
return self.preprocess_dict(data_dict)
def preprocess_dict(self, data_dict):
args = self.args
imgs = data_dict['source_img'].cpu()
masks = data_dict['source_mask'].cpu()
image_size = self.image_size
lm_2d = data_dict['source_keypoints'][0].detach().cpu().numpy()
transform_ffhq = calc_ffhq_alignment(lm_2d, size=imgs.shape[2], device=self.device)
theta = torch.FloatTensor(transform_ffhq['theta'])[None]
if args.align_source:
grid = torch.linspace(-1, 1, image_size)
v, u = torch.meshgrid(grid, grid)
identity_grid = torch.stack([u, v, torch.ones_like(u)], dim=2).view(1, -1, 3)
if args.align_source:
# Align input images using theta
if imgs.shape[0] > 1:
raise Exception('works only with single size')
eye_vector = torch.zeros(theta.shape[0], 1, 3)
eye_vector[:, :, 2] = 1
theta_ = torch.cat([theta, eye_vector], dim=1).float()
# Perform 2x zoom-in compared to default theta
scale = torch.zeros_like(theta_)
scale[:, [0, 1], [0, 1]] = args.align_scale
scale[:, 2, 2] = 1
theta_ = torch.bmm(theta_, scale)[:, :2]
align_warp = identity_grid.repeat_interleave(theta_.shape[0], dim=0)
align_warp = align_warp.bmm(theta_.transpose(1, 2)).view(theta_.shape[0], image_size, image_size, 2)
source_imgs = F.grid_sample(imgs, align_warp)
source_masks = F.grid_sample(masks, align_warp)
else:
source_imgs, source_masks = imgs, masks
source_keypoints = torch.from_numpy(self.fa.get_landmarks_from_image(tensor2image(source_imgs[0]))[0])[None]
output_data_dict = {
'source_img': source_imgs,
'source_mask': source_masks,
'source_keypoints': (source_keypoints / (image_size / 2) - 1),
}
return output_data_dict
def process_driver_img(self, data_dict: dict, driver_image: Image, crop_center=False):
driver_pose = self.fa.get_landmarks_from_image(np.asarray(driver_image))[0]
if crop_center or driver_image.size[0] != driver_image.size[1]:
pose = driver_pose
center = ((pose.min(0) + pose.max(0)) / 2).round().astype(int)
size = int(max(pose[:, 0].max() - pose[:, 0].min(), pose[:, 1].max() - pose[:, 1].min()))
center[1] -= size // 6
driver_image = driver_image.crop((center[0] - size, center[1] - size, center[0] + size, center[1] + size))
data_dict['target_img'] = self.data_transform(driver_image)[None]
data_dict['target_mask'] = torch.zeros_like(data_dict['target_img'])
landmark_input = np.asarray(driver_image)
kp_scale = landmark_input.shape[0] // 2
data_dict['target_keypoints'] = \
torch.from_numpy(self.fa.get_landmarks_from_image(landmark_input)[0] / kp_scale - 1)[None]
return data_dict
def reuse_source_image(self, driver_image):
pass
@torch.no_grad()
def evaluate(self, source_image, driver_image,
neutral_pose: bool = False, source_information_for_reuse: dict = None, crop_center=False):
if source_information_for_reuse is not None:
data_dict = source_information_for_reuse.get('data_dict')
if data_dict is None:
data_dict = self.process_source_for_input_dict(source_image, self.source_transform, crop_center)
else:
data_dict = self.process_source_for_input_dict(source_image, self.source_transform, crop_center)
data_dict = self.process_driver_img(data_dict, driver_image, crop_center)
for k, v in data_dict.items():
data_dict[k] = data_dict[k].to(self.device)
out = self.model(data_dict,
neutral_pose=neutral_pose,
source_information=source_information_for_reuse)
out['source_information']['data_dict'] = data_dict
return out
def run_example(self):
src_path = 'data/imgs/taras1.jpg'
driver_path = 'data/imgs/taras1.jpg'
driver_img = Image.open(src_path)
source_image = Image.open(driver_path)
out = self.evaluate(source_image, driver_img, crop_center=True)
render_result = tensor2image(out['render_masked'].cpu())
shape_result = tensor2image(out['pred_target_shape_img'][0].cpu())
print('Successfully rendered')
def main(args):
infer = Infer(args)
infer.run_example()
if __name__ == "__main__":
print('Start infer!')
default_modnet_path = 'MODNet/pretrained/modnet_photographic_portrait_matting.ckpt'
default_model_path = 'data/rome.pth'
parser = argparse.ArgumentParser(conflict_handler='resolve')
parser.add_argument('--save_dir', default='.', type=str)
parser.add_argument('--save_render', default='True', type=args_utils.str2bool, choices=[True, False])
parser.add_argument('--model_checkpoint', default=default_model_path, type=str)
parser.add_argument('--modnet_path', default=default_modnet_path, type=str)
parser.add_argument('--random_seed', default=0, type=int)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--verbose', default='False', type=args_utils.str2bool, choices=[True, False])
args, _ = parser.parse_known_args()
parser = importlib.import_module(f'src.rome').ROME.add_argparse_args(parser)
args = parser.parse_args()
args.deca_path = 'DECA'
main(args)