-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtofu.hpp
568 lines (528 loc) · 18 KB
/
tofu.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
#ifndef TOFU_HPP
#define TOFU_HPP
#include <cstdlib>
#include <cassert>
#include "timer.hpp"
enum class TofudMapping {
// Tofu TNI mapping
// MAPXxY_ZRING
// XxY are placement of numa processes
// ZRing is the broadcasting algorithm (but currently, Z==2 is not supported)
MAP1x1_1RING,
MAP2x1_1RING,
MAP1x2_1RING,
MAP2x2_1RING,
MAP4x1_1RING,
MAP1x4_1RING,
MAP1x1_2RING,
MAP2x1_2RING,
MAP1x2_2RING,
MAP2x2_2RING,
MAP4x1_2RING,
MAP1x4_2RING,
DEFAULT,
};
// #if defined(__FUJITSU) || defined(__CLANG_FUJITSU)
#ifdef USE_TOFU
#include <mpi.h>
#include <utofu.h>
void tofu_tni_mapping(int rowcol, int numaid, int nnuma, TofudMapping map, int& tni1, int& tni2)
{
// rowcol==0: this is for row communicator, rowcol==1 this is for col communicator
// numaid, nnuma: numa process mapping of this process
// map is described above
// tni1, tni2: which tnis to use
// sanity checks
assert(numaid >= 0 && numaid < nnuma);
assert(0 <= rowcol && rowcol < 2);
// defaults
//fprintf(stderr, "tni map :: rowcol = %d numaid = %d nnuma = %d\n", rowcol, numaid, nnuma); fflush(stderr);
if(map==TofudMapping::DEFAULT){
if(nnuma==1) map = TofudMapping::MAP1x1_1RING;
else if(nnuma==2) map = TofudMapping::MAP2x1_1RING;
else if(nnuma==4) map = TofudMapping::MAP2x2_1RING;
else std::abort();
}
tni2 = 0; // not considred yet
switch(map){
case TofudMapping::MAP1x1_1RING:
assert(nnuma==1);
tni1 = (rowcol==0 ? 0: 1);
break;
case TofudMapping::MAP2x1_1RING: // fall through
case TofudMapping::MAP1x2_1RING:
assert(nnuma==2);
// use all four tnis. I don't know how useful this is.
tni1 = (rowcol==0 ? 0: 1) + numaid * 2;
break;
case TofudMapping::MAP2x2_1RING: // fall through
case TofudMapping::MAP1x4_1RING:
assert(nnuma==4);
// better row.
if(rowcol==0) tni1 = numaid;
else tni1 = 4 + numaid/2;
break;
case TofudMapping::MAP4x1_1RING:
assert(nnuma==4);
// better col. intra node is little faster than inter.
if(rowcol==1) tni1 = numaid;
else tni1 = 4 + numaid/2;
break;
default:
std::abort();
}
}
struct TofudComm {
static constexpr int addr_max = 20; // maximum number of addresses to register
static constexpr size_t minchunksize = 1920; // chunk sizes
static constexpr size_t maxchunksize = 16*1024*1024-1;
static constexpr int nchunks_base = 100;
MPI_Comm comm;
int id, np;
int sourceid(int id, int np, int root) const {
if(id==root) return -1;
else if(id==0) return np-1;
else return id-1;
}
int sinkid(int id, int np, int root) const{
int tid = id<root ? id+np-root: id-root;
if(tid==np-1) return -1;
else if(id==np-1) return 0;
else return id+1;
}
struct comminfo {
// tofu infos of source and sink nodes
utofu_vcq_id_t freeport, sessport; // remote cqs
utofu_stadd_t rptrs[addr_max]; // remote addresses
utofu_stadd_t rptr_step, myptr_step;
int id;
volatile int64_t step __attribute__((aligned(256))); // used for synchronizatino
// volatile is required in the manual
} source_info, sink_info;
utofu_vcq_hdl_t freevcq, sessvcq; // local cqs
utofu_stadd_t myptrs[addr_max];
size_t maxsizes[addr_max/2];
int nhandles;
static constexpr int ndata_max = 4; // number of on-going communication is limited to 4
struct datainfo {
// descriptor for communication
int handle;
size_t offset;
size_t size;
size_t chunk_size;
int nchunks;
int ndetached;
int root;
int step;
} data[ndata_max];
int icompleted, idetached, ndata;
// the constructor is a global operation and must be called from all the node in base_comm synchronously.
TofudComm(MPI_Comm base_comm, int tni1=-1, int tni2=-1): comm(base_comm)
{
MPI_Comm_rank(comm, &id);
MPI_Comm_size(comm, &np);
nhandles = -1;
source_info.step = INT64_MIN;
source_info.id = id==0?np-1: id-1;
sink_info.step = INT64_MIN;
sink_info.id = id==np-1?0: id+1;
clear();
if(tni1 != -1) config(tni1, tni2);
}
void config(int tni1, int ){
assert(nhandles == -1);
//fprintf(stderr, "tni config :: rank = %d, tni = %d\n", id, tni1); fflush(stderr);
nhandles = 0;
size_t num_tnis;
utofu_tni_id_t *tni_ids;
int rc = utofu_get_onesided_tnis(&tni_ids, &num_tnis);
if(rc != UTOFU_SUCCESS || num_tnis == 0) MPI_Abort(comm, 500);
//fprintf(stderr, "get tni :: rank = %d tni = %d num_tnis = %d\n", id, tni1, num_tnis); fflush(stderr);
utofu_tni_id_t tni_id = tni_ids[tni1%num_tnis];
//free(tni_ids); something wrong?
// may easily fault because the # of session cq is small
check_tofu_err(utofu_create_vcq(tni_id, 0, &freevcq));
check_tofu_err(utofu_create_vcq(tni_id, UTOFU_VCQ_FLAG_SESSION_MODE, &sessvcq));
// sync step
utofu_reg_mem(freevcq, (void*)&source_info.step, sizeof(int64_t), 0, &source_info.myptr_step);
utofu_reg_mem(freevcq, (void*)&sink_info.step, sizeof(int64_t), 0, &sink_info.myptr_step);
utofu_vcq_id_t freevcq_id, sessvcq_id;
utofu_query_vcq_id(freevcq, &freevcq_id);
utofu_query_vcq_id(sessvcq, &sessvcq_id);
MPI_Barrier(comm);
// exchange handles
// send forward
MPI_Sendrecv(&freevcq_id, 1, MPI_UINT64_T, source_info.id, 0,
&sink_info.freeport, 1, MPI_UINT64_T, sink_info.id, 0, comm, MPI_STATUS_IGNORE);
MPI_Sendrecv(&sessvcq_id, 1, MPI_UINT64_T, source_info.id, 0,
&sink_info.sessport, 1, MPI_UINT64_T, sink_info.id, 0, comm, MPI_STATUS_IGNORE);
MPI_Sendrecv(&source_info.myptr_step, 1, MPI_UINT64_T, source_info.id, 0,
&sink_info.rptr_step, 1, MPI_UINT64_T, sink_info.id, 0, comm, MPI_STATUS_IGNORE);
// send backward
MPI_Sendrecv(&freevcq_id, 1, MPI_UINT64_T, sink_info.id, 0,
&source_info.freeport, 1, MPI_UINT64_T, source_info.id, 0, comm, MPI_STATUS_IGNORE);
MPI_Sendrecv(&sessvcq_id, 1, MPI_UINT64_T, sink_info.id, 0,
&source_info.sessport, 1, MPI_UINT64_T, source_info.id, 0, comm, MPI_STATUS_IGNORE);
MPI_Sendrecv(&sink_info.myptr_step, 1, MPI_UINT64_T, sink_info.id, 0,
&source_info.rptr_step, 1, MPI_UINT64_T, source_info.id, 0, comm, MPI_STATUS_IGNORE);
//utofu_set_vcq_id_path(&sink_info.freeport, NULL);
//utofu_set_vcq_id_path(&sink_info.sessport, NULL);
//utofu_set_vcq_id_path(&source_info.freeport, NULL);
//utofu_set_vcq_id_path(&source_info.sessport, NULL);
MPI_Barrier(comm);
}
void destroy() {
if(nhandles!= -1){
MPI_Barrier(comm);
utofu_dereg_mem(freevcq, source_info.myptr_step, 0);
utofu_dereg_mem(freevcq, sink_info.myptr_step, 0);
for(int i=0; i<nhandles; i+=2) {
utofu_dereg_mem(freevcq, myptrs[i], 0);
utofu_dereg_mem(sessvcq, myptrs[i+1], 0);
}
utofu_free_vcq(freevcq);
utofu_free_vcq(sessvcq);
MPI_Barrier(comm);
nhandles = -1;
}
}
// NOTE. THE DESTRUCTOR MUST BE CALLED INSIDE MPI-REGION.
// the destructor is a global operation and ust be called fro all the node in comm synchronously
~TofudComm() {
destroy();
}
// get_handle is a global operation and must be called from all the node in comm synchronously.
int get_handle(char* ptr, size_t maxsize) {
assert(nhandles != -1);
memset(ptr, 1, maxsize);
maxsizes[nhandles/2] = maxsize;
MPI_Barrier(comm);
assert(nhandles+2 <= addr_max);
utofu_stadd_t fp, sp;
utofu_reg_mem(freevcq, (void*)ptr, maxsize, 0, &fp);
utofu_reg_mem(sessvcq, (void*)ptr, maxsize, 0, &sp);
// send forward
MPI_Sendrecv(&fp, 1, MPI_UINT64_T, source_info.id, 0,
&sink_info.rptrs[nhandles], 1, MPI_UINT64_T, sink_info.id, 0, comm, MPI_STATUS_IGNORE);
MPI_Sendrecv(&sp, 1, MPI_UINT64_T, source_info.id, 0,
&sink_info.rptrs[nhandles+1], 1, MPI_UINT64_T, sink_info.id, 0, comm, MPI_STATUS_IGNORE);
// send backward
MPI_Sendrecv(&fp, 1, MPI_UINT64_T, sink_info.id, 0,
&source_info.rptrs[nhandles], 1, MPI_UINT64_T, source_info.id, 0, comm, MPI_STATUS_IGNORE);
MPI_Sendrecv(&sp, 1, MPI_UINT64_T, sink_info.id, 0,
&source_info.rptrs[nhandles+1], 1, MPI_UINT64_T, source_info.id, 0, comm, MPI_STATUS_IGNORE);
myptrs[nhandles] = fp;
myptrs[nhandles+1] = sp;
nhandles += 2;
MPI_Barrier(comm);
return nhandles/2 - 1;
}
// schedule a new communication
// step: wait until neighbors to send send_sync(step)
void schedule(int step, int handle, size_t offset, size_t size, int root) {
if(np==1 || size==0) return;
assert(size < nchunks_base * maxchunksize);
assert(ndata < ndata_max);
assert(offset + size <= maxsizes[handle]);
data[ndata].handle = handle;
data[ndata].offset = offset;
data[ndata].size = size;
if(size < nchunks_base * minchunksize){
data[ndata].chunk_size = minchunksize;
data[ndata].nchunks = (size+minchunksize-1)/minchunksize;
}
else {
data[ndata].chunk_size = (size+nchunks_base-1)/nchunks_base;
data[ndata].nchunks = (size+data[ndata].chunk_size-1)/data[ndata].chunk_size;
}
if(sinkid(id,np,root)!=-1) data[ndata].ndetached = 0;
else data[ndata].ndetached = data[ndata].nchunks;
data[ndata].root = root;
data[ndata].step = step;
++ndata;
}
// invoke = schedule() + progress()
void invoke(int step, int handle, size_t offset, size_t size, int root) {
schedule(step, handle, offset, size, root);
progress();
}
// notify neighbors my step.
void send_sync(int step) {
send_sync_impl(step);
}
// check if sink process steps
bool check_sync(int step) {
int64_t cstep = step;
int64_t sstep = sink_info.step; // volatile
return sstep >= cstep;
}
// progress communication.
bool progress(bool timer=true) {
if(timer) Timer::beg(Timer::TEST);
if(!detached() && check_sync(data[idetached].step)){
if(send_impl(data[idetached])) ++ idetached;
}
if(timer) Timer::end(Timer::TEST);
return detached();
}
// Whether all the communications are scheduled or not.
// While !detached(), you need to call progress() to progress the communication.
// detached() only means the communication is offloaded to th hardware.
// If you wan to do something behind the communication, you should test() and compute.
bool detached() const { return idetached == ndata; }
// wait for completion. you are free to use the buffer after wait().
void wait(bool timer=true) {
if(timer) Timer::beg(Timer::WAIT);
//printf("rank = %d wait\n", id); fflush(stdout);
if(icompleted < ndata ){
if(!detached()) while(!progress(false));
while(icompleted < ndata) {
wait_impl(data[icompleted]);
++icompleted;
}
}
clear();
if(timer) Timer::end(Timer::WAIT);
}
bool test(bool timer=true) {
bool ret = true;;
if(timer) Timer::beg(Timer::TEST);
if(!detached() && !progress()) ret = false;
else {
while(icompleted < ndata){
if(!try_wait_impl(data[icompleted])){
ret = false;
break;
}
++icompleted;
}
}
if(timer) Timer::end(Timer::TEST);
return ret;
}
void clear() {
icompleted = idetached = ndata = 0;
}
void check_tofu_err(int err){
if(err==UTOFU_ERR_FULL) { MPI_Abort(comm, 501); }
if(err==UTOFU_ERR_NOT_AVAILABLE) { MPI_Abort(comm, 502); }
if(err==UTOFU_ERR_NOT_SUPPORTED) { MPI_Abort(comm, 503); }
}
void check_tofu_err2(int err){
#if 0
if(rc==UTOFU_ERR_TCQ_DESC) {printf("rank=%d tcq error desc %d %d\n", id, rc, (int)cbdata); fflush(stdout); }
if(rc==UTOFU_ERR_TCQ_MEMORY) {printf("rank=%d tcq error memory %d %d\n", id, rc, (int)cbdata); fflush(stdout); }
if(rc==UTOFU_ERR_TCQ_STADD) {printf("rank=%d tcq error stadd %d %d\n", id, rc, (int)cbdata); fflush(stdout); }
if(rc==UTOFU_ERR_TCQ_LENGTH) {printf("rank=%d tcq error length %d %d\n", id, rc, (int)cbdata); fflush(stdout); }
#else
(void)err; // do nothing
#endif
}
void poll_tcq_impl() {
void* cbdata;
int rc = utofu_poll_tcq(freevcq, 0, &cbdata);
assert(rc==UTOFU_SUCCESS || rc==UTOFU_ERR_BUSY);
if(rc == UTOFU_SUCCESS) ++icompleted; // !!!
}
void send_sync_impl(int step) {
//printf("rank = %d send_sync %d\n", id, step); fflush(stdout);
unsigned long int flags = UTOFU_ONESIDED_FLAG_STRONG_ORDER;
while(true){
int rc = utofu_put_piggyback8(freevcq, source_info.freeport, (uint64_t)step, source_info.rptr_step, 8, 0, flags, (void*)-1);
assert(rc==UTOFU_SUCCESS || rc==UTOFU_ERR_BUSY);
if(rc==UTOFU_SUCCESS) break;
poll_tcq_impl();
}
}
bool send_impl(datainfo& data) {
if(sinkid(id,np,data.root)==-1) return true;
if(data.ndetached == data.nchunks) return true;
//printf("rank = %d send\n", id); fflush(stdout);
bool nosps = (np==2 || sinkid(sink_info.id,np,data.root)==-1);
utofu_vcq_hdl_t myport = (id==data.root ? freevcq: sessvcq);
utofu_stadd_t myaddr = (id==data.root ? myptrs[data.handle*2]: myptrs[data.handle*2+1]);
int nb = data.nchunks;
size_t offset = data.offset;
size_t chunk_size = data.chunk_size;
size_t length = data.size;
utofu_stadd_t rptr = sink_info.rptrs[data.handle*2+1];
if(nb>1){
unsigned long int flags = UTOFU_ONESIDED_FLAG_STRONG_ORDER;
flags |= nosps? 0: UTOFU_ONESIDED_FLAG_SPS(1);
while(true) {
int rc = utofu_put_stride(myport, sink_info.sessport, myaddr+offset, rptr+offset, chunk_size, chunk_size, nb-1, 0, flags, (void*)data.handle);
assert(rc==UTOFU_SUCCESS || rc==UTOFU_ERR_BUSY);
if(rc==UTOFU_SUCCESS) break;
poll_tcq_impl();
}
}
{
unsigned long int flags = UTOFU_ONESIDED_FLAG_STRONG_ORDER;
flags |= UTOFU_ONESIDED_FLAG_TCQ_NOTICE;
flags |= nosps? UTOFU_ONESIDED_FLAG_REMOTE_MRQ_NOTICE: UTOFU_ONESIDED_FLAG_SPS(1);
size_t start = chunk_size * (nb-1);
assert(start < length);
size_t clength = length - start; //start + chunk_size > length ? length - start: chunk_size;
while(true) {
int rc = utofu_put(myport, sink_info.sessport, myaddr+offset+start, rptr+offset+start, clength, 0, flags, (void*)data.handle);
assert(rc==UTOFU_SUCCESS || rc==UTOFU_ERR_BUSY);
if(rc==UTOFU_SUCCESS) break;
poll_tcq_impl();
}
}
data.ndetached = data.nchunks;
return true;
}
void wait_impl(datainfo& data) {
if(id==data.root || sinkid(id,np,data.root)!=-1){
//printf("rank = %d waitm\n", id); fflush(stdout);
utofu_vcq_hdl_t myport = (id==data.root ? freevcq: sessvcq);
void *cbdata;
int rc;
do {
rc = utofu_poll_tcq(myport, 0, &cbdata);
} while(rc==UTOFU_ERR_NOT_FOUND);
check_tofu_err2(rc);
assert(rc==UTOFU_SUCCESS);
}
else if(data.nchunks) {
//printf("rank = %d waitc\n", id); fflush(stdout);
int rc;
struct utofu_mrq_notice notice;
do {
rc = utofu_poll_mrq(sessvcq, 0, ¬ice);
} while(rc==UTOFU_ERR_NOT_FOUND);
assert(rc==UTOFU_SUCCESS);
data.ndetached = data.nchunks = 0;
}
}
bool try_wait_impl(datainfo& data) {
if(id==data.root || sinkid(id,np,data.root)!=-1){
utofu_vcq_hdl_t myport = (id==data.root ? freevcq: sessvcq);
void *cbdata;
int rc = utofu_poll_tcq(myport, 0, &cbdata);
check_tofu_err2(rc);
assert(rc==UTOFU_SUCCESS || rc==UTOFU_ERR_NOT_FOUND);
return rc != UTOFU_ERR_NOT_FOUND;
}
else if(data.nchunks) {
struct utofu_mrq_notice notice;
int rc = utofu_poll_mrq(sessvcq, 0, ¬ice);
assert(rc==UTOFU_SUCCESS || rc==UTOFU_ERR_NOT_FOUND);
if(rc==UTOFU_ERR_NOT_FOUND) return false;
data.ndetached = data.nchunks = 0;
}
return true;
}
};
#else
// backup
#include "chain_schedule.hpp"
void tofu_tni_mapping(int rowcol, int numaid, int nnuma, TofudMapping, int& tni1, int& tni2 )
{
assert(numaid >= 0 && numaid < nnuma);
assert(0 <= rowcol && rowcol < 2);
tni1 = tni2 = 0;
}
struct TofudComm {
// use ChainSchedule for machiens without Tofu
static constexpr int adr_max = 10;
ChainSchedule base;
char* ptrs[adr_max];
int nhandles;
TofudComm(MPI_Comm base_comm, int /*tni1*/=-1, int /*tni2*/=-1): base(base_comm), nhandles(0) {}
void config(int, int ){ }
~TofudComm() {}
int get_handle(char* ptr, size_t ) {
ptrs[nhandles] = ptr;
return nhandles++;
}
void schedule(int , int handle, size_t offset, size_t size, int root=-1) {
base.schedule(ptrs[handle]+offset, size, root);
}
void invoke(int step, int handle, size_t offset, size_t size, int root) {
schedule(step, handle, offset, size, root);
}
void send_sync(int ) {}
bool check_sync(int ) { return true; }
bool progress(bool timer=true) { return base.progress(timer); }
bool detached() const { return base.done(); }
bool test(bool timer=true) { return base.progress(timer); }
void wait(bool /*timer*/=true) { base.force_complete(); }
void clear() { base.clear(); }
};
#endif
void wait_all(TofudComm& lcom, TofudComm& rcom){
Timer::beg(Timer::WAIT);
if(!lcom.detached() && !rcom.detached()) while(true){
if(lcom.progress(false)) break;
if(rcom.progress(false)) break;
}
lcom.wait(false);
rcom.wait(false);
Timer::end(Timer::WAIT);
}
#endif
#ifdef UNIT_TEST
#include <time.h>
static int64_t get_utime(){
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return ts.tv_nsec + ts.tv_sec*1000000000ll;
}
int main(int argc, char* argv[])
{
MPI_Init(&argc, &argv);
int numprocs;
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
if(numprocs<2) MPI_Abort(MPI_COMM_WORLD, 1);
int myrank;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
size_t maxlength = 1024*1024*100;
char* buffer0 = (char*)malloc(maxlength);
char* buffer1 = (char*)malloc(maxlength);
memset(buffer0, 0, maxlength);
memset(buffer1, 0, maxlength);
{
TofudComm tcom(MPI_COMM_WORLD, myrank);
int handle = tcom.get_handle(buffer0, maxlength);
int* ptr = (int*)buffer0;
for(int step=0; step<100; ++step){
int root = step % numprocs;
tcom.send_sync(step);
if(myrank==root){
for(int i=0; i<step+1; ++i) ptr[i] = step;
}
tcom.invoke(step, handle, (step+1)*sizeof(int), root);
tcom.wait();
for(int i=0; i<step+1; ++i) {
printf("rank=%d, %d == %d\n", myrank, ptr[i], step ); fflush(stdout);
}
}
}
{
TofudComm tcom(MPI_COMM_WORLD, myrank);
int handle0 = tcom.get_handle(buffer0, maxlength);
int handle1 = tcom.get_handle(buffer0, maxlength);
for(int step=0; step<10; ++step){
tcom.send_sync(step);
tcom.invoke(step, handle0, maxlength-step*1024*1024, step%numprocs);
uint64_t time0 = get_utime();
int* t1 = (int*)buffer1;
int x = 0;
for(int i=0; i<(maxlength-(step+1)*1024*1024)/sizeof(int); ++i) x += t1[i];
for(int i=0; i<(maxlength-(step+1)*1024*1024)/sizeof(int); ++i) t1[i] = step;
uint64_t time1 = get_utime();
tcom.wait();
uint64_t time2 = get_utime();
printf("rank %d, get %d, %.9e %.9e\n", myrank, x, (time1-time0)*1e-9, (time2-time1)*1e-9); fflush(stdout);
int h = handle0; handle0 = handle1; handle1 = h;
char* p = buffer0; buffer0 = buffer1; buffer1 = p;
}
// DESTRUCT TofudComm HERE
}
free(buffer0);
free(buffer1);
MPI_Finalize();
}
#endif