-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathbinomial_coefficient.hpp
105 lines (80 loc) · 2.45 KB
/
binomial_coefficient.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/*
Binomial coefficient
--------------------
For a set containing N unique elements, find the number of subsets containing
K elements (a.k.a. "N choose K"). Alternatively, it is the coefficient of X^K
in the binomial expansion of (1 + X)^N.
This implementation uses a recurrence relation along with a dynamic programming
approach to calculate the binomial coefficient C(N, K).
Time complexity
---------------
O(N * K), where N and K are as mentioned above.
Space complexity
----------------
O(N * K), where N and K are as mentioned above.
*/
#ifndef BINOMIAL_COEFFICIENT_HPP
#define BINOMIAL_COEFFICIENT_HPP
#include <vector>
using std::vector;
typedef unsigned long long ULL;
const ULL EMPTY = 0;
/*
calc_binomial_coefficient
---------------------------
Uses the recurrence relation,
C(n, k) = C(n - 1, k) + C(n - 1, k - 1),
and a dynamic programming approach to find the binomial coefficient C(n, k).
Return value
------------
C(n, k) modulo 2^64. (Due to limited range of ULL).
Time complexity
---------------
O(n * k).
Space complexity
----------------
O(1).
*/
ULL calc_binomial_coefficient(int n, int k, vector<vector<ULL>>& cache) {
// check if value has already been calculated
if (cache[n][k] != EMPTY) {
return cache[n][k];
}
ULL result;
if (n == k or k == 0) {
result = 1;
} else {
result = calc_binomial_coefficient(n - 1, k, cache) + calc_binomial_coefficient(n - 1, k - 1, cache);
}
// result is stored in cache so that it isn't re-calculated when needed again
cache[n][k] = result;
return result;
}
/*
binomial_coefficient
--------------------
Creates a cache that is used by calc_binomial_coefficient to memoize the calculated
coefficients, and returns the value of C(n, k).
Return value
------------
C(n, k) modulo 2^64. (Due to limited range of ULL).
Time complexity
---------------
O(n * k).
Space complexity
----------------
O(n * k).
*/
ULL binomial_coefficient(int n, int k) {
if (n < k) {
return 0; // no subsets of size k are possible
}
vector<vector<ULL>> cache;
cache.resize(n + 1);
// initialise all values in cache as EMPTY
for (int i = 0; i <= n; i++) {
cache[i].resize(k + 1, EMPTY);
}
return calc_binomial_coefficient(n, k, cache);
}
# endif // BINOMIAL_COEFFICIENT_HPP