-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy path0_1_knapsack.hpp
45 lines (37 loc) · 1.39 KB
/
0_1_knapsack.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/*
0-1 Knapsack Problem
--------------------
Given weights and values of n items, put these items in a knapsack
of a fixed capacity to get the maximum total value in the knapsack.
Time complexity
---------------
O(N*C), where N is the number of items and C is the capacity of the knapsack.
Space complexity
----------------
O(N*C), the variables same as time complexity.
Author
------
Manas Gupta (@heisenberg-2505)
*/
#ifndef KNAPSACK_0_1_HPP
#define KNAPSACK_0_1_HPP
#include <algorithm>
#include <vector>
using std::vector;
typedef long long LL;
LL knapsack (LL capacity, LL numberOfItems, vector<LL> weights, vector<LL> values) {
vector<vector<LL>> maxItems (numberOfItems + 1, vector<LL> (capacity + 1));
for (LL i = 0; i <= numberOfItems; i++) {
for (LL j = 0; j <= capacity; j++) {
if (i == 0 || j == 0) { // Base case.
maxItems[i][j] = 0;
} else if (weights[i - 1] <= j) { // Two cases - if the element is included and if its not.
maxItems[i][j] = std::max (values[i - 1] + maxItems[i - 1][j - weights[i - 1]], maxItems[i - 1][j]);
} else { // If the weight of the current element is greater than the maximum weight.
maxItems[i][j] = maxItems[i - 1][j];
}
}
}
return maxItems[numberOfItems][capacity];
}
#endif // KNAPSACK_0_1_HPP