-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy patheval.py
550 lines (491 loc) · 23.7 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import shutil
import warnings
import argparse
import torch
import os
import os.path as osp
import yaml
warnings.simplefilter("ignore")
# load packages
import random
from tqdm import tqdm
from modules.commons import *
import time
import torchaudio
import librosa
import torchaudio.compliance.kaldi as kaldi
from hf_utils import load_custom_model_from_hf
from resemblyzer import preprocess_wav, VoiceEncoder
# Load model and configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from transformers import Wav2Vec2FeatureExtractor, WavLMForXVector
from transformers import Wav2Vec2Processor, HubertForCTC
import jiwer
import string
from baselines.dnsmos.dnsmos_computor import DNSMOSComputer
def calc_mos(computor, audio, orin_sr):
# only 16k audio is supported
target_sr = 16000
if orin_sr != 16000:
audio = librosa.resample(
audio, orig_sr=orin_sr, target_sr=target_sr, res_type="kaiser_fast"
)
result = computor.compute(audio, target_sr, False)
sig, bak, ovr = result["SIG"], result["BAK"], result["OVRL"]
if ovr == 0:
print("calculate dns mos failed")
return sig, bak, ovr
mos_computer = DNSMOSComputer(
"baselines/dnsmos/sig_bak_ovr.onnx",
"baselines/dnsmos/model_v8.onnx",
device="cuda",
device_id=0,
)
def load_models(args):
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
config = yaml.safe_load(open(dit_config_path, "r"))
model_params = recursive_munch(config["model_params"])
model = build_model(model_params, stage="DiT")
hop_length = config["preprocess_params"]["spect_params"]["hop_length"]
sr = config["preprocess_params"]["sr"]
# Load checkpoints
model, _, _, _ = load_checkpoint(
model,
None,
dit_checkpoint_path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
)
for key in model:
model[key].eval()
model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load additional modules
from modules.campplus.DTDNN import CAMPPlus
campplus_ckpt_path = load_custom_model_from_hf(
"funasr/campplus", "campplus_cn_common.bin", config_filename=None
)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)
vocoder_type = model_params.vocoder.type
if vocoder_type == 'bigvgan':
from modules.bigvgan import bigvgan
bigvgan_name = model_params.vocoder.name
bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
vocoder_fn = bigvgan_model
elif vocoder_type == 'hifigan':
from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r'))
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
hift_gen.load_state_dict(torch.load(hift_config['pretrained_model_path'], map_location='cpu'))
hift_gen.eval()
hift_gen.to(device)
vocoder_fn = hift_gen
elif vocoder_type == "vocos":
vocos_config = yaml.safe_load(open(model_params.vocoder.vocos.config, 'r'))
vocos_path = model_params.vocoder.vocos.path
vocos_model_params = recursive_munch(vocos_config['model_params'])
vocos = build_model(vocos_model_params, stage='mel_vocos')
vocos_checkpoint_path = vocos_path
vocos, _, _, _ = load_checkpoint(vocos, None, vocos_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False)
_ = [vocos[key].eval().to(device) for key in vocos]
_ = [vocos[key].to(device) for key in vocos]
total_params = sum(sum(p.numel() for p in vocos[key].parameters() if p.requires_grad) for key in vocos.keys())
print(f"Vocoder model total parameters: {total_params / 1_000_000:.2f}M")
vocoder_fn = vocos.decoder
else:
raise ValueError(f"Unsupported vocoder type: {vocoder_type}")
speech_tokenizer_type = model_params.speech_tokenizer.type
if speech_tokenizer_type == 'whisper':
# whisper
from transformers import AutoFeatureExtractor, WhisperModel
whisper_name = model_params.speech_tokenizer.name
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
def semantic_fn(waves_16k):
ori_inputs = whisper_feature_extractor([waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True)
ori_input_features = whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
with torch.no_grad():
ori_outputs = whisper_model.encoder(
ori_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1]
return S_ori
elif speech_tokenizer_type == 'cnhubert':
from transformers import (
Wav2Vec2FeatureExtractor,
HubertModel,
)
hubert_model_name = config['model_params']['speech_tokenizer']['name']
hubert_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_name)
hubert_model = HubertModel.from_pretrained(hubert_model_name)
hubert_model = hubert_model.to(device)
hubert_model = hubert_model.eval()
hubert_model = hubert_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [
waves_16k[bib].cpu().numpy()
for bib in range(len(waves_16k))
]
ori_inputs = hubert_feature_extractor(ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000).to(device)
with torch.no_grad():
ori_outputs = hubert_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
elif speech_tokenizer_type == 'xlsr':
from transformers import (
Wav2Vec2FeatureExtractor,
Wav2Vec2Model,
)
model_name = config['model_params']['speech_tokenizer']['name']
output_layer = config['model_params']['speech_tokenizer']['output_layer']
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
wav2vec_model = Wav2Vec2Model.from_pretrained(model_name)
wav2vec_model.encoder.layers = wav2vec_model.encoder.layers[:output_layer]
wav2vec_model = wav2vec_model.to(device)
wav2vec_model = wav2vec_model.eval()
wav2vec_model = wav2vec_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [
waves_16k[bib].cpu().numpy()
for bib in range(len(waves_16k))
]
ori_inputs = wav2vec_feature_extractor(ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000).to(device)
with torch.no_grad():
ori_outputs = wav2vec_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
else:
raise ValueError(f"Unsupported speech tokenizer type: {model_params.speech_tokenizer.type}")
# Generate mel spectrograms
mel_fn_args = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": config['preprocess_params'].get('fmin', 0),
"fmax": None if config['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
"center": False
}
from modules.audio import mel_spectrogram
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
return (
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
)
@torch.no_grad()
def main(args):
# init xvector models
if args.xvector_extractor == "wavlm":
wavlm_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"microsoft/wavlm-base-plus-sv"
)
wavlm_model = WavLMForXVector.from_pretrained(
"microsoft/wavlm-base-plus-sv"
).to(device)
elif args.xvector_extractor == "resemblyzer":
resemblyzer_encoder = VoiceEncoder()
elif args.xvector_extractor == 'wavlm-large':
import sys
sys.path.append("../UniSpeech/downstreams/speaker_verification")
from verification import init_model
wavlm_model = init_model("wavlm_large", "D:/wavlm_large_finetune.pth")
wavlm_model.cuda()
wavlm_model.eval()
else:
raise ValueError(f"Unknown xvector extractor: {args.xvector_extractor}")
# init asr model
asr_processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft")
asr_model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft").to(device)
(
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
) = load_models(args)
sr = mel_fn_args["sampling_rate"]
source_dir = args.source
target_dir = args.target
diffusion_steps = args.diffusion_steps
length_adjust = args.length_adjust
inference_cfg_rate = args.inference_cfg_rate
baseline = args.baseline
max_samples = args.max_samples
try:
source_audio_list = open(osp.join(source_dir, "index.tsv"), "r").readlines()
except FileNotFoundError:
source_audio_list = os.listdir(source_dir)
source_audio_list = [f for f in source_audio_list if f.endswith(".wav")]
target_audio_list = os.listdir(target_dir)
conversion_result_dir = args.output
if baseline:
conversion_result_dir = os.path.join(conversion_result_dir, baseline)
os.makedirs(conversion_result_dir, exist_ok=True)
similarity_list = []
gt_wer_list = []
gt_cer_list = []
vc_wer_list = []
vc_cer_list = []
dnsmos_list = []
for source_i, source_line in enumerate(tqdm(source_audio_list)):
if source_i >= max_samples:
break
source_index, source_transcript = source_line.strip().split("\t")
source_path = osp.join(source_dir, f"{source_index}.wav")
for target_i, target_name in enumerate(target_audio_list):
target_path = osp.join(target_dir, target_name)
print(f"Processing {source_path} -> {target_path}")
if os.path.exists(osp.join(conversion_result_dir, source_index, f"{target_name}")):
# already converted, load the converted file
vc_wave_16k, _ = librosa.load(
osp.join(conversion_result_dir, source_index, f"{target_name}"), sr=16000
)
vc_wave_16k = torch.tensor(vc_wave_16k).unsqueeze(0)
ref_waves_16k, _ = librosa.load(target_path, sr=16000)
ref_waves_16k = torch.tensor(ref_waves_16k).unsqueeze(0)
else:
if baseline == "openvoice":
from baselines.openvoice import convert as openvoice_convert
ref_waves_16k, vc_wave_16k = openvoice_convert(source_path, target_path, "temp.wav")
elif baseline == "cosyvoice":
from baselines.cosyvoice import convert as cosyvoice_convert
ref_waves_16k, vc_wave_16k = cosyvoice_convert(source_path, target_path, "temp.wav")
else:
ref_waves_16k, vc_wave = convert(
source_path,
target_path,
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
sr,
length_adjust,
diffusion_steps,
inference_cfg_rate,
remove_prompt=args.remove_prompt,
)
vc_wave_16k = torchaudio.functional.resample(vc_wave, sr, 16000)
os.makedirs(osp.join(conversion_result_dir, source_index), exist_ok=True)
torchaudio.save(
osp.join(conversion_result_dir, source_index, f"{target_name}"),
vc_wave_16k.cpu(),
16000,
)
if args.xvector_extractor == "wavlm":
ref_inputs = wavlm_feature_extractor(
ref_waves_16k.squeeze(0).cpu(), padding=True, return_tensors="pt"
).to(device)
ref_embeddings = wavlm_model(**ref_inputs).embeddings
ref_embeddings = torch.nn.functional.normalize(ref_embeddings, dim=-1).cpu()
vc_inputs = wavlm_feature_extractor(
vc_wave_16k.squeeze(0).cpu(), padding=True, return_tensors="pt"
).to(device)
vc_embeddings = wavlm_model(**vc_inputs).embeddings
vc_embeddings = torch.nn.functional.normalize(vc_embeddings, dim=-1).cpu()
similarity = torch.nn.functional.cosine_similarity(
ref_embeddings, vc_embeddings, dim=-1
)
elif args.xvector_extractor == "resemblyzer":
ref_wav_resemblyzer = preprocess_wav(target_path)
vc_wav_resemblyzer = preprocess_wav(
osp.join(conversion_result_dir, source_index, f"{target_name}")
)
ref_embed = resemblyzer_encoder.embed_utterance(ref_wav_resemblyzer)
vc_embed = resemblyzer_encoder.embed_utterance(vc_wav_resemblyzer)
similarity = np.inner(ref_embed, vc_embed)
elif args.xvector_extractor == 'wavlm-large':
ref_embed = wavlm_model(ref_waves_16k.to(device)).cpu()
vc_embed = wavlm_model(vc_wave_16k.to(device)).cpu()
similarity = torch.nn.functional.cosine_similarity(ref_embed, vc_embed, dim=-1)
else:
raise ValueError(f"Unknown xvector extractor: {args.xvector_extractor}")
print(f"Similarity: {similarity}")
similarity_list.append(similarity)
# perform asr
vc_asr_inputs = asr_processor(
vc_wave_16k.squeeze(0).cpu(), return_tensors="pt", padding=True
).to(device)
vc_asr_logits = asr_model(**vc_asr_inputs).logits
predicted_ids = torch.argmax(vc_asr_logits, dim=-1)
vc_transcription = asr_processor.decode(predicted_ids[0])
# perform asr on source 16k
source_wav_16k = librosa.load(source_path, sr=16000)[0]
source_asr_inputs = asr_processor(
source_wav_16k, return_tensors="pt", padding=True
).to(device)
source_asr_logits = asr_model(**source_asr_inputs).logits
source_predicted_ids = torch.argmax(source_asr_logits, dim=-1)
source_transcription = asr_processor.decode(source_predicted_ids[0])
# convert transcriptions to all lower to calculate WER and CER
source_transcript = source_transcript.lower()
# remove punctuations in source_transcript
source_transcript = source_transcript.translate(str.maketrans("", "", string.punctuation))
source_transcription = source_transcription.lower()
vc_transcription = vc_transcription.lower()
# calculate WER and CER
gt_wer = jiwer.wer(source_transcript, source_transcription)
gt_cer = jiwer.cer(source_transcript, source_transcription)
vc_wer = jiwer.wer(source_transcript, vc_transcription)
vc_cer = jiwer.cer(source_transcript, vc_transcription)
print(f"GT WER: {gt_wer}, CER: {gt_cer}")
print(f"VC WER: {vc_wer}, CER: {vc_cer}")
gt_wer_list.append(gt_wer)
gt_cer_list.append(gt_cer)
vc_wer_list.append(vc_wer)
vc_cer_list.append(vc_cer)
# calculate dnsmos
sig, bak, ovr = calc_mos(mos_computer, vc_wave_16k.squeeze(0).cpu().numpy(), 16000)
dnsmos_list.append((sig, bak, ovr))
print(f"Average GT WER: {sum(gt_wer_list) / len(gt_wer_list)}")
print(f"Average GT CER: {sum(gt_cer_list) / len(gt_cer_list)}")
print(f"Average VC WER: {sum(vc_wer_list) / len(vc_wer_list)}")
print(f"Average VC CER: {sum(vc_cer_list) / len(vc_cer_list)}")
print(f"Average similarity: {sum(similarity_list) / len(similarity_list)}")
print(f"Average DNS MOS SIG: {sum([x[0] for x in dnsmos_list]) / len(dnsmos_list)}")
print(f"Average DNS MOS BAK: {sum([x[1] for x in dnsmos_list]) / len(dnsmos_list)}")
print(f"Average DNS MOS OVR: {sum([x[2] for x in dnsmos_list]) / len(dnsmos_list)}")
# save wer and cer result into this directory as a txt
with open(osp.join(conversion_result_dir, source_index, "result.txt"), 'w') as f:
f.write(f"GT WER: {sum(gt_wer_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
f.write(f"GT CER: {sum(gt_cer_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
f.write(f"VC WER: {sum(vc_wer_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
f.write(f"VC CER: {sum(vc_cer_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
f.write(f"Average similarity: {sum(similarity_list[-len(target_audio_list):]) / len(target_audio_list)}\n")
print(f"Average WER: {sum(gt_wer_list) / len(gt_wer_list)}")
print(f"Average CER: {sum(gt_cer_list) / len(gt_cer_list)}")
print(f"Average WER: {sum(vc_wer_list) / len(vc_wer_list)}")
print(f"Average CER: {sum(vc_cer_list) / len(vc_cer_list)}")
print(f"Average similarity: {sum(similarity_list) / len(similarity_list)}")
# save similarity list
with open(osp.join(conversion_result_dir, f"{args.xvector_extractor}_similarity.tsv"), "w") as f:
f.write("\n".join([str(s) for s in similarity_list]))
# save wer and cer result into this directory as a txt
with open(osp.join(conversion_result_dir, "result.txt"), 'w') as f:
f.write(f"GT WER: {sum(gt_wer_list) / len(gt_wer_list)}\n")
f.write(f"GT CER: {sum(gt_cer_list) / len(gt_cer_list)}\n")
f.write(f"VC WER: {sum(vc_wer_list) / len(vc_wer_list)}\n")
f.write(f"VC CER: {sum(vc_cer_list) / len(vc_cer_list)}\n")
print(f"Average DNS MOS SIG: {sum([x[0] for x in dnsmos_list]) / len(dnsmos_list)}")
print(f"Average DNS MOS BAK: {sum([x[1] for x in dnsmos_list]) / len(dnsmos_list)}")
print(f"Average DNS MOS OVR: {sum([x[2] for x in dnsmos_list]) / len(dnsmos_list)}")
def convert(
source_path,
target_path,
model,
semantic_fn,
vocoder_fn,
campplus_model,
to_mel,
mel_fn_args,
sr,
length_adjust,
diffusion_steps,
inference_cfg_rate,
remove_prompt=False,
):
source_audio = librosa.load(source_path, sr=sr)[0]
ref_audio = librosa.load(target_path, sr=sr)[0]
# decoded_wav = encodec_model.decoder(encodec_latent)
# torchaudio.save("test.wav", decoded_wav.cpu().squeeze(0), 24000)
# crop only the first 30 seconds
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
if source_audio.size(1) + ref_audio.size(1) > 30 * sr:
print(f"reference audio clipped from {ref_audio.size(1)/sr} seconds to {30 * sr - source_audio.size(1)} seconds")
ref_audio = ref_audio[:, :30 * sr - source_audio.size(1)]
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
S_alt = semantic_fn(source_waves_16k)
S_ori = semantic_fn(ref_waves_16k)
mel = to_mel(source_audio.to(device).float())
mel2 = to_mel(ref_audio.to(device).float())
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
feat2 = torchaudio.compliance.kaldi.fbank(
ref_waves_16k, num_mel_bins=80, dither=0, sample_frequency=16000
)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
# Length regulation
cond = model.length_regulator(
S_alt, ylens=target_lengths, n_quantizers=3, f0=None
)[0]
prompt_condition = model.length_regulator(
S_ori, ylens=target2_lengths, n_quantizers=3, f0=None
)[0]
if remove_prompt:
cat_condition = cond
mel2 = torch.zeros([mel2.size(0), mel2.size(1), 0]).to(mel2.device)
else:
cat_condition = torch.cat([prompt_condition, cond], dim=1)
vc_target = model.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2,
style2,
None,
diffusion_steps,
inference_cfg_rate=inference_cfg_rate,
)
vc_target = vc_target[:, :, mel2.size(-1) :]
# Convert to waveform
vc_wave = vocoder_fn(vc_target).squeeze(1)
return ref_waves_16k, vc_wave
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--source", type=str, default="./examples/libritts-test-clean/"
)
parser.add_argument("--target", type=str, default="./examples/reference/")
parser.add_argument("--output", type=str, default="./examples/eval/converted/")
parser.add_argument("--diffusion-steps", type=int, default=30)
parser.add_argument("--length-adjust", type=float, default=1.0)
parser.add_argument("--inference-cfg-rate", type=float, default=0.7)
parser.add_argument(
"--xvector-extractor", type=str, default="wavlm-large"
) # wavlm or resemblyzer
parser.add_argument("--baseline", type=str, default="") # use "" for Seed-VC
parser.add_argument("--max-samples", type=int, default=20)
parser.add_argument("--remove-prompt", type=bool, default=False)
args = parser.parse_args()
main(args)