-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDecisions.hs
117 lines (105 loc) · 4.32 KB
/
Decisions.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
module Decisions (
bestMove,
static,
advantage,
) where
-- For simplicity and performance, the game engine considers that the
-- goal is to take the opposite king, though in real chess this move is
-- forbidden. It is the engine user's (typically, the interface's)
-- responsibility to check the game state every move to ensure these
-- illegal moves do not happen.
import ChessBoard
import Color
import Move
import Tree
import GameTree
import ChessRules
import Data.List (maximumBy, minimumBy)
import Data.Function (on)
-- returns the heuristic value of some piece type. This value will be part
-- of the criteria used to evaluate a player's advantage.
-- Scores are discrete. To allow rather fine-grained evaluation,
-- the standard heuristic values are multiplied by 100.
value :: PieceType -> Int
value Pawn = 100
value Knight = 300
value Bishop = 300
value Rook = 500
value Queen = 900
value King = 40000 -- The sum of other heuristic criteria is assumed to be
-- smaller than 1.000
-- Returns a heuristic score representing the advantage of the
-- side given in argument.
-- This score is roughly bounded between -80.000 and 80.000.
-- A score below -40.000 means you win, above 40.000 means you lose.
-- 0 is a draw.
static :: Color -> ChessBoard -> Int
static color cb = sum $ map signedValue $ toList cb
where
signedValue :: Maybe Piece -> Int
signedValue Nothing = 0
signedValue (Just (Piece col t)) =
(if color == col then id else negate) $ value t
-- Returns the list of possible gains, given a starting Max node, using the
-- alpha-beta algorithm. Only the leaves are evaluated.
maximize' :: Tree Int -> [Int]
maximize' (Node _ children@(_:_)) = mapMin $ map minimize' children
maximize' (Node n []) = [n]
-- Returns the list of possible gains, given a starting Min node, using the
-- alpha-beta algorithm. Only the leaves are evaluated.
minimize' :: Tree Int -> [Int]
minimize' (Node _ children@(_:_)) = mapMax $ map maximize' children
minimize' (Node n []) = [n]
-- Alpha-beta-optimized version of 'map minimum'. 'mapMin' is such that :
-- 'maximum (mapMin l) == maximum (map minimum l)'. This is the only
-- guarantee on the output of 'mapMin'.
mapMin :: (Ord a) => [[a]] -> [a]
mapMin [] = []
mapMin (l:ls) = m : mapMin' m ls
where
m = minimum l
mapMin' :: (Ord a) => a -> [[a]] -> [a]
mapMin' _ [] = []
mapMin' biggestMinSoFar (l:ls)
| thisMin > biggestMinSoFar = thisMin : mapMin' thisMin ls
| otherwise = thisMin : mapMin' biggestMinSoFar ls
where thisMin = minGEq biggestMinSoFar l
-- 'minGEq m l' is 'minimum l' if that minimum is greater or equal to m,
-- otherwise it is 'm'.
minGEq :: (Ord a) => a -> [a] -> a
minGEq _ [x] = x
minGEq m (x:y:xs) | x <= m = m
| otherwise = minGEq m (min x y : xs)
-- Alpha-beta-optimized version of 'map maximum'. 'mapMax' is such that :
-- 'minimum (mapMax l) == minimum (map maximum l)'. This is the only
-- guarantee on the output of 'mapMax'.
mapMax :: (Ord a) => [[a]] -> [a]
mapMax [] = []
mapMax (l:ls) = m : mapMax' m ls
where
m = maximum l
mapMax' :: (Ord a) => a -> [[a]] -> [a]
mapMax' _ [] = []
mapMax' smallestMaxSoFar (l:ls)
| thisMax > smallestMaxSoFar = thisMax : mapMax' thisMax ls
| otherwise = thisMax : mapMax' smallestMaxSoFar ls
where thisMax = maxLEq smallestMaxSoFar l
-- 'maxLEq m l' is 'maximum l' if that maximum is lesser or equal to m,
-- otherwise it is 'm'.
maxLEq :: (Ord a) => a -> [a] -> a
maxLEq _ [x] = x
maxLEq m (x:y:xs) | x >= m = m
| otherwise = maxLEq m (max x y : xs)
-- | Evaluate the advantage of player 'col' by exploring the game tree up to a
-- given depth, assuming 'col' is to play. A depth of zero computes the static
-- advantage (i.e., no tree generation).
advantage :: Color -> Int -> ChessBoard -> Int
advantage col depth = maximum . maximize' . fmap (static col) .
prune depth . gameTree
-- | Select the best legal move in a given position, exploring the game tree to
-- a given depth. A depth of zero means that only the immediate possible boards
-- are generated and statically evaluated.
bestMove :: Int -> ChessBoard -> Move
bestMove depth cb = minimumBy
(compare `on` (advantage (other $ nextMove cb) depth . doMove cb)) $
possibleMoves cb