-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorchtools.py
84 lines (68 loc) · 3.71 KB
/
pytorchtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0, ckpt_path='checkpoint.pt', best_ckpt_path='best_checkpoint.pt', trace_func=print):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.ckpt_path = ckpt_path
self.best_ckpt_path = best_ckpt_path
self.trace_func = trace_func
def __call__(self, val_loss, model, dense_optimizer, sparse_optimizer=None):
score = -val_loss
if self.best_score is None:
self.best_score = score
# self.save_checkpoint(val_loss, model, dense_optimizer, sparse_optimizer)
if self.verbose:
self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving best ckpt ...')
if sparse_optimizer:
ckpt_dict = {'model': model.state_dict(), 'sparse_optimizer':sparse_optimizer.state_dict(), 'dense_optimizer':dense_optimizer.state_dict()}
else:
ckpt_dict = {'model': model.state_dict(), 'dense_optimizer':dense_optimizer.state_dict()}
torch.save(ckpt_dict, self.best_ckpt_path)
self.val_loss_min = val_loss
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
self.save_checkpoint(val_loss, model, dense_optimizer, sparse_optimizer)
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
if self.verbose:
self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving best ckpt ...')
if sparse_optimizer:
ckpt_dict = {'model': model.state_dict(), 'sparse_optimizer':sparse_optimizer.state_dict(), 'dense_optimizer':dense_optimizer.state_dict()}
else:
ckpt_dict = {'model': model.state_dict(), 'dense_optimizer':dense_optimizer.state_dict()}
torch.save(ckpt_dict, self.best_ckpt_path)
self.save_checkpoint(val_loss, model, dense_optimizer, sparse_optimizer)
self.val_loss_min = val_loss
self.counter = 0
def save_checkpoint(self, val_loss, model, dense_optimizer, sparse_optimizer):
'''Saves model when validation loss decrease.'''
if self.verbose:
self.trace_func(f'Saving ckpt ...')
if sparse_optimizer:
ckpt_dict = {'model': model.state_dict(), 'sparse_optimizer':sparse_optimizer.state_dict(), 'dense_optimizer':dense_optimizer.state_dict()}
else:
ckpt_dict = {'model': model.state_dict(), 'dense_optimizer':dense_optimizer.state_dict()}
torch.save(ckpt_dict, self.ckpt_path)