-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchart_inputs.R
722 lines (636 loc) · 25.8 KB
/
chart_inputs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
# Create outputs needed for speculative investment PPT and presentation (Excel charts, data points maps)
library(tidyverse)
library(sf)
#Data Paths
data_path <- "K:/DataServices/Projects/Current_Projects/Regional_Plan_Update_Research/Speculative Investment/Data/"
export_path <- "K:/DataServices/Projects/Current_Projects/Regional_Plan_Update_Research/Speculative Investment/visuals/inputs/_2000-2023/MIT tables without property managers"
setwd(data_path)
#Data - 5yr window
warren <- read_csv("20241220_warren_speculative-investment-analysis-dataset_withforeclosure_5yr-window-networks.csv") %>%
mutate(investor = ifelse(investor_type_purchase != "Non-investor", "Investor", "Non-investor"),
total_transactions = n())
warren_noforeclosures <- read_csv("20241220_warren_speculative-investment-analysis-dataset_withoutforeclosure_5yr-window-networks.csv") %>%
mutate(investor = ifelse(investor_type_purchase != "Non-investor", "Investor", "Non-investor"),
total_transactions = n())
warren_mapc <- read_csv("20241220_warren_speculative-investment-analysis-dataset_mapc_withforeclosure_5yr-window-networks.csv") %>%
mutate(investor = ifelse(investor_type_purchase != "Non-investor", "Investor", "Non-investor"),
total_transactions = n())
warren_mapc_noforeclosures <- read_csv("20241220_warren_speculative-investment-analysis-dataset_mapc_withoutforeclosure_5yr-window-networks.csv") %>%
mutate(investor = ifelse(investor_type_purchase != "Non-investor", "Investor", "Non-investor"),
total_transactions = n())
#Variables to help
res_list <- c("R1F", "R2F", "R3F", "CON")
#can't include first or last 3 years of data due to investor definitions
investor_year_min <- min(warren_mapc$year) + 4
investor_year_max <- max(warren_mapc$year) - 4
#can't include first 2 years or last 2 years due to flip definition
flip_year_min <- min(warren_mapc$year) + 2
flip_year_max <- max(warren_mapc$year) - 2
setwd(export_path)
#Data point - # of transactions in MAPC region
count(warren_mapc)
#Helpful to know - count and % of investors by size and property type
table <- warren_mapc %>%
group_by(investor_type_purchase) %>%
mutate(trans_by_investor_type = n()) %>%
filter(restype %in% res_list | restype == 'APT') %>%
group_by(restype, investor_type_purchase) %>%
mutate(count = n(),
percent = count/trans_by_investor_type) %>%
select(investor_type_purchase, restype, count, percent) %>%
arrange(investor_type_purchase, restype) %>%
distinct()
# table %>%
# select(investor_type_purchase, restype, count) %>%
# pivot_wider(names_from = 'restype', values_from = 'count')
#
# table %>%
# select(investor_type_purchase, restype, percent) %>%
# pivot_wider(names_from = 'restype', values_from = 'percent')
#Table 1: Warren Group Real Estate Transactions by Residential Type, MAPC Region
table_1 <- warren_mapc %>%
select(restype, total_transactions) %>%
mutate(restype_group = ifelse(restype == "REO" | restype == "MOB" | restype == "MUR" | restype == "NEW" | restype == "OMR",
"Other Residential Buildings", restype)) %>%
group_by(restype_group) %>%
#count transactions by restype then divide by total transactions in full dataset
reframe(
transactions = n(),
transactions_p = transactions/total_transactions
) %>%
distinct()
#table_1
write.csv(table_1, "table_1.csv")
rm(table_1)
#Table 2: Warren Group Real Estate Investor Transactions by Investor Size, MAPC Region
table_2 <- warren_mapc %>%
#filtering to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
#filtering to only investor transactions
filter(investor == "Investor") %>%
#count of all investor transatcionts
mutate(total_investor = n()) %>%
group_by(investor_type_purchase) %>%
#count investor transactions by investor size and then calculate %
reframe(transactions = n(),
transactions_p = transactions/total_investor) %>%
distinct()
#table_2
write.csv(table_2, "table_2.csv")
rm(table_2)
#Figure 1: Real Estate Transactions by Residential Building Type and Year, MAPC Region
figure_1 <- warren_mapc %>%
#creating grouping used in charts - is Other here all other restypes or is Other REO?
mutate(res_group = ifelse(!(restype %in% res_list), 'Other', restype)) %>%
group_by(res_group, year) %>%
#count total transactions by above res_groups and year
summarize(
transactions = n()
) %>%
distinct() %>%
pivot_wider(names_from = year, values_from = transactions)
#figure_1
write.csv(figure_1, "figure_1.csv")
rm(figure_1)
#Figure 2: Percent of Real Estate Transactions Purchased with Cash by Year, MAPC Region
figure_2 <- warren_mapc %>%
group_by(year) %>%
#count of annual transactions
mutate(annual_transactions = n()) %>%
#filter to only cash sales
filter(cash_sale == 1) %>%
group_by(year, cash_sale) %>%
#get count of cash sales by year and then calculate %
mutate(count = n(),
cash_p = count/annual_transactions) %>%
ungroup() %>%
select(year, cash_p) %>%
arrange(year) %>%
distinct()
#figure_2
write.csv(figure_2, "figure_2.csv")
rm(figure_2)
#Figure 3: Total Value of Purchases made by Investors by Year, Millions
figure_3 <- warren_mapc %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
#filter to investor purchases
filter(investor == "Investor") %>%
group_by(year) %>%
#sum price of all investor purchases by year
mutate(total_spent = sum(price_adj),
total_spent_millions = total_spent/1000000) %>%
select(year, total_spent, total_spent_millions) %>%
arrange(year) %>%
distinct()
#figure_3 %>% print(n=25)
write.csv(figure_3, "figure_3.csv")
rm(figure_3)
#Percent of transactions in Metro Boston made by an investor - time period?
investor_p <- warren_mapc %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
#calculate total transactions in investor years
mutate(total_transactions_period = n()) %>%
#filter to only investor transactions
filter(investor == "Investor") %>%
#count total investor transactions then calculate %
mutate(investor_transactions = n(),
investor_transactions_p = investor_transactions/total_transactions_period) %>%
select(investor_transactions_p) %>%
distinct()
#investor_p
investor_p_4yrs <- warren_mapc %>%
#filter to investor years
filter(year >= (investor_year_max - 5) & year <= investor_year_max) %>%
#calculate total transactions in investor years
mutate(total_transactions_period = n()) %>%
#filter to only investor transactions
filter(investor == "Investor") %>%
#count total investor transactions then calculate %
mutate(investor_transactions = n(),
investor_transactions_p = investor_transactions/total_transactions_period) %>%
select(investor_transactions_p) %>%
distinct()
#investor_p_4yrs
#write.csv(investor_p, "")
rm(investor_p, investor_p_4yrs)
#Figure 4: Investor Purchases by Residential Building Type and Year
by_restype <- warren_mapc %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(restype, year) %>%
#count transactions by year and restype
mutate(annual_transactions = n()) %>%
#filter to only investor purchases and selected restypes
filter(investor == "Investor" & restype %in% res_list) %>%
#count investor purchases by restype and then calculate %
mutate(investor_transactions = n(),
investor_transactions_p = investor_transactions/annual_transactions) %>%
select(restype, year, investor_transactions, annual_transactions, investor_transactions_p) %>%
distinct()
all_restype <- warren_mapc %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(year) %>%
#count transactions by year
mutate(annual_transactions = n()) %>%
#filter to only investor transactions
filter(investor == "Investor") %>%
#count total investor transactions across all restypes and calculate %
mutate(investor_transactions = n(),
investor_transactions_p = investor_transactions/annual_transactions,
restype = 'All Residential Types') %>%
select(restype, year, investor_transactions, annual_transactions, investor_transactions_p) %>%
distinct()
#join two dataframes and format for Excel
figure_4 <- rbind(by_restype, all_restype) %>%
select(restype, year, investor_transactions_p) %>%
arrange(year) %>%
pivot_wider(names_from = 'year', values_from = 'investor_transactions_p')
#figure_4
write.csv(figure_4, "figure_4.csv")
rm(by_restype, all_restype, figure_4)
#share of transactions that were foreclosures
# warren_mapc %>%
# group_by(year) %>%
# mutate(annual_transactions = n()) %>%
# group_by(year, deedtype) %>%
# mutate(foreclosure_c = sum(ifelse(deedtype == 'FD', 1, 0)),
# foreclosure_p = round(100*(foreclosure_c/annual_transactions), digits = 2)
# ) %>%
# select(year, deedtype, foreclosure_c, annual_transactions, foreclosure_p) %>%
# filter(deedtype == 'FD') %>%
# distinct() %>%
# arrange(year) %>%
# view()
#Figure 5: Investor Purchases by Residential Building Type and Year, Excluding Foreclosures
by_restype <- warren_mapc_noforeclosures %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(restype, year) %>%
#count transactions by year and restype
mutate(annual_transactions = n()) %>%
#filter to only investor purchases and selected restypes
filter(investor == "Investor" & restype %in% res_list) %>%
#count transactions by investors and restype and calculate %
mutate(investor_transactions = n(),
investor_transactions_p = investor_transactions/annual_transactions) %>%
select(restype, year, investor_transactions, annual_transactions, investor_transactions_p) %>%
arrange(year) %>%
distinct()
all_restype <- warren_mapc_noforeclosures %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(year) %>%
#count transactions by year
mutate(annual_transactions = n()) %>%
#filter to only investor transactions
filter(investor == "Investor") %>%
#count investor transactions by year and calculate %
mutate(investor_transactions = n(),
investor_transactions_p = investor_transactions/annual_transactions,
restype = 'All Residential Types') %>%
select(restype, year, investor_transactions, annual_transactions, investor_transactions_p) %>%
arrange(year) %>%
distinct()
#join data frames and clean for input to Excel
figure_5 <- rbind(by_restype, all_restype) %>%
select(restype, year, investor_transactions_p) %>%
arrange(year) %>%
pivot_wider(names_from = 'year', values_from = 'investor_transactions_p')
figure_5
write.csv(figure_5, "figure_5.csv")
rm(by_restype, all_restype, figure_5)
#Figure 6: Investor Purchases by Investor Size as a Share of All Transactions
figure_6 <- warren_mapc %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(year) %>%
#count transactions by year
mutate(annual_transactions = n()) %>%
#filter to only investor transactions
filter(investor == "Investor") %>%
group_by(year, investor_type_purchase) %>%
#count transactions by year and investor type and calculate %
mutate(annual_investor_type_transactions = n(),
transactions_p = annual_investor_type_transactions/annual_transactions) %>%
select(year, investor_type_purchase, transactions_p) %>%
arrange(year) %>%
distinct() %>%
pivot_wider(names_from = 'year', values_from = 'transactions_p')
#figure_6
write.csv(figure_6, "figure_6.csv")
rm(figure_6)
#Figure 7: Percent of Cash Sales by Investor Status and Real Estate Type
figure_7 <- warren_mapc %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
#filter to selected restypes
filter(restype %in% res_list) %>%
group_by(restype, investor) %>%
#count total cash sales
mutate(investor_restype_total = n()) %>%
#filter to cash sales
filter(cash_sale == 1) %>%
#count transactions by restype and investor status and calculate %
mutate(count = n(),
sales_p = count/investor_restype_total) %>%
select(restype, investor, sales_p) %>%
arrange(restype) %>%
distinct() %>%
pivot_wider(names_from = 'investor', values_from = 'sales_p')
#figure_7
write.csv(figure_7, "figure_7.csv")
rm(figure_7)
#Figure 8: Annual Median Sales Price, Condominiums, 1, 2, and 3 Family Properties, Cash vs. Non-Cash Sales
figure_8 <- warren_mapc %>%
#filter to selected restypes
filter(restype %in% res_list) %>%
select(year, cash_sale, price_adj) %>%
group_by(cash_sale, year) %>%
#calculate median sale value by year and cash sale status
summarize(
median_sales = median(price_adj)
) %>%
pivot_wider(names_from = 'year', values_from = 'median_sales')
#figure_8
write.csv(figure_8, "figure_8.csv")
rm(figure_8)
#Figure 9: Annual Median Sales Price, Residential 1 Family Properties, Cash vs. Non-Cash Sales
figure_9 <- warren_mapc %>%
#filter to selected restypes
filter(restype == "R1F") %>%
select(year, cash_sale, price_adj) %>%
group_by(cash_sale, year) %>%
#calculate median sale value by year and cash sale status
summarize(
median_sales = median(price_adj)
) %>%
pivot_wider(names_from = 'year', values_from = 'median_sales')
#figure_9
write.csv(figure_9, "figure_9.csv")
rm(figure_9)
#Figure 9: Annual Median Sales Price, Condos, Cash vs. Non-Cash Sales
figure_9_1 <- warren_mapc %>%
#filter to selected restypes
filter(restype == "CON") %>%
select(year, cash_sale, price_adj) %>%
group_by(cash_sale, year) %>%
#calculate median sale value by year and cash sale status
summarize(
median_sales = median(price_adj)
) %>%
pivot_wider(names_from = 'year', values_from = 'median_sales')
#figure_9_1
write.csv(figure_9_1, "figure_9.1.csv")
rm(figure_9_1)
#Figure 10: Annual Median Sales Price, Residential 3 Family Properties, Cash vs. Non-Cash Sales
figure_10 <- warren_mapc %>%
#filter to selected restypes
filter(restype == "R3F") %>%
select(year, cash_sale, price_adj) %>%
group_by(cash_sale, year) %>%
#calculate median sale value by year and cash sale status
summarize(
median_sales = median(price_adj)
) %>%
pivot_wider(names_from = 'year', values_from = 'median_sales')
#figure_10
write.csv(figure_10, "figure_10.csv")
rm(figure_10)
#Figure 11: Share of Transactions that are Investor Purchases by MAPC Submarket
figure_11 <- warren_mapc %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(mapc_submarket) %>%
#count total transactions by submarket
mutate(submarket_total = n()) %>%
#filter to investor transactions
filter(investor == "Investor") %>%
#count investor transactions by submarket and calculate %
mutate(
investor_count = n(),
submarket_p = investor_count/submarket_total
) %>%
select(mapc_submarket, submarket_p) %>%
distinct() %>%
arrange(mapc_submarket)
#figure_11
write.csv(figure_11, "figure_11.csv")
rm(figure_11)
#Figure 12: Share of Transactions that are Investor Purchases by MAPC Submarket by Year
figure_12 <- warren_mapc %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(year, mapc_submarket) %>%
#count total transactions by year and submarket
mutate(annual_submarket_transactions = n()) %>%
#filter to investor transactions
filter(investor == "Investor") %>%
#count investor transactions by year and submarket and calculate %
mutate(
investor_count = n(),
submarket_p = investor_count/annual_submarket_transactions
) %>%
select(mapc_submarket, year, submarket_p) %>%
distinct() %>%
arrange(mapc_submarket, year) %>%
pivot_wider(names_from = 'year', values_from = 'submarket_p')
#figure_12
write.csv(figure_12, "figure_12.csv")
rm(figure_12)
#Table 3: Buy-Side Flip Purchases in the MAPC Region by Residential Type
table_3_restype <- warren_mapc %>%
#filter to flip years
filter(year >= flip_year_min & year <= flip_year_max) %>%
group_by(restype) %>%
#count total transactions by restype
mutate(total_res_transactions = n()) %>%
#filter to only flipped properties
filter(flip_ind == 1) %>%
#count flipped properties by restype and calculate %
mutate(flip_count = n(),
flip_p = flip_count/total_res_transactions) %>%
select(restype, flip_count, total_res_transactions, flip_p) %>%
distinct()
table_3_total <- warren_mapc %>%
#filter to flip years
filter(year >= flip_year_min & year <= flip_year_max) %>%
#filter to just restypes in table
filter(restype %in% res_list | restype == "APT" | restype == "MUR") %>%
#count total transactions by restype
mutate(total_res_transactions = n()) %>%
#filter to only flipped properties
filter(flip_ind == 1) %>%
#count flipped properties by restype and calculate %
mutate(flip_count = n(),
flip_p = flip_count/total_res_transactions,
restype = "Total") %>%
select(restype, flip_count, total_res_transactions, flip_p) %>%
distinct()
table_3 <- rbind(table_3_restype, table_3_total)
#table_3
write.csv(table_3, "table_3.csv")
rm(table_3)
# % of residential building types that are flips over study period
warren_mapc %>%
#filter to flip years
filter(year >= flip_year_min & year <= flip_year_max) %>%
#count total transactions by restype
mutate(total_transactions = n()) %>%
#filter to only flipped properties
filter(flip_ind == 1) %>%
#count flipped properties by restype and calculate %
mutate(flip_count = n(),
flip_p = flip_count/total_transactions) %>%
select(flip_count, total_transactions, flip_p) %>%
distinct()
#Figure 13: Percent of Purchases That Became Flipped Properties by Year, Excludes foreclosures
figure_13 <- warren_mapc_noforeclosures %>%
#filter to flip years
filter(year >= flip_year_min & year <= flip_year_max) %>%
group_by(year) %>%
#count total transactions by year
mutate(annual_transactions = n()) %>%
#filter to only flipped properties
filter(buy_side_flip == 1) %>%
#count flipped properties by year and calculate %
mutate(flip_count = n(),
flip_p = flip_count/annual_transactions) %>%
select(year, flip_p) %>%
arrange(year) %>%
distinct()
#figure_13
write.csv(figure_13, "figure_13.csv")
rm(figure_13)
#Figure 14: Percent of Purchases That Became Flipped Properties by Real Estate Type and Year, Excludes Foreclosures
figure_14 <- warren_mapc_noforeclosures %>%
#filter to flip years
filter(year >= flip_year_min & year <= flip_year_max) %>%
#filter to selected restypes
filter(restype %in% res_list | restype == "APT") %>%
group_by(year, restype) %>%
#count transactions by year and restype
mutate(annual_res_transactions = n()) %>%
#filter to flipped properties
filter(buy_side_flip == 1) %>%
#count flipped properties by year and restype and calculate %
mutate(flip_count = n(),
flip_p = flip_count/annual_res_transactions) %>%
select(year, restype, flip_p) %>%
distinct() %>%
arrange(year) %>%
pivot_wider(names_from = 'year', values_from = 'flip_p')
#figure_14
write.csv(figure_14, "figure_14.csv")
rm(figure_14)
#Figure 15: Percent of Purchases That Became Flipped Properties by Investor Size and Real Estate Type, Excludes Foreclosures
figure_15 <- warren_mapc_noforeclosures %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
#filter to selected restypes
filter(restype %in% res_list | restype == "APT") %>%
group_by(restype, investor_type_sale) %>%
#count transactions by restype and investor size
mutate(res_investor_transactions = n()) %>%
#filter to flipped properties
filter(buy_side_flip == 1) %>%
#count flipped properties by restype and investor size and calculate %
mutate(flip_count = n(),
flip_p = flip_count/res_investor_transactions) %>%
select(restype, investor_type_sale, flip_p) %>%
arrange(restype, investor_type_sale) %>%
distinct() %>%
pivot_wider(names_from = 'restype', values_from = 'flip_p')
#figure_15
write.csv(figure_15, "figure_15.csv")
rm(figure_15)
#Figure 16: Share of Purchases that Become Flipped Properties, By MAPC Submarket, Excludes Foreclosures
figure_16 <- warren_mapc_noforeclosures %>%
#filter to flip years
filter(year >= flip_year_min & year <= flip_year_max) %>%
group_by(mapc_submarket) %>%
#count transactions by submarket
mutate(submarket_count = n()) %>%
#filter to flipped properties
filter(buy_side_flip == 1) %>%
#count flipped properties by submarket and calculate %
mutate(flip_count = n(),
submarket_p = flip_count/submarket_count) %>%
select(mapc_submarket, submarket_p) %>%
arrange(mapc_submarket) %>%
distinct()
#figure_16
write.csv(figure_16, "figure_16.csv")
rm(figure_16)
#Figure 17: Annual Median Sales Price by Year, Flips vs. Non-Flips, Excludes Foreclosures
figure_17 <- warren_mapc_noforeclosures %>%
#filter to flip years
filter(year >= flip_year_min & year <= flip_year_max) %>%
group_by(year, buy_side_flip) %>%
#calculate median sales price by year and flip status
summarize(median_sales = median(price_adj)) %>%
pivot_wider(names_from = 'year', values_from = 'median_sales')
#figure_17
write.csv(figure_17, "figure_17.csv")
rm(figure_17)
#Figure 18: Median Percent Difference in Sales Price of Flipped Single Family Homes, by Investor Type
figure_18 <- warren_mapc_noforeclosures %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
#filter to single family and flipped properties
filter(restype == "R1F" & flip_ind == 1) %>%
#create investor groups used in chart
mutate(investor_group = ifelse(investor_type_sale == "Non-investor", "Non-investor",
ifelse(investor_type_sale == "Institutional", "Institutional Investors", "All Other Investors"))
) %>%
group_by(year, investor_group) %>%
#calculate median percent price difference by year and investor group -- using flip price difference % variable created in script 3
summarize(flip_median_dif = median(price_diff_pch)) %>%
pivot_wider(names_from = 'year', values_from = 'flip_median_dif')
#figure_18
write.csv(figure_18, "figure_18.csv")
rm(figure_18)
# NEW CHART: Figure 19: % investor sales 2000-2022 excluding count investors
llc_investors <- warren_mapc %>%
group_by(year) %>%
mutate(annual_total = n()) %>%
filter(investor_type_purchase_llc != 'Non-Small LLC') %>%
mutate(llc_total = n(),
llc_p = llc_total/annual_total) %>%
select(year, llc_p) %>%
distinct() %>%
arrange(year)
building_investors <- warren_mapc %>%
group_by(year) %>%
mutate(annual_total = n()) %>%
filter(investor_type_purchase_building != 'Non-building investor') %>%
mutate(building_total = n(),
building_p = building_total/annual_total) %>%
select(year, building_p) %>%
distinct() %>%
arrange(year)
value_investors <- warren_mapc %>%
group_by(year) %>%
mutate(annual_total = n()) %>%
filter(investor_type_purchase_value != 'Non-value investor') %>%
mutate(value_total = n(),
value_p = value_total/annual_total) %>%
select(year, value_p) %>%
distinct() %>%
arrange(year)
count_investors <- warren_mapc %>%
group_by(year) %>%
mutate(annual_total = n()) %>%
filter(investor_type_purchase_count != 'Non-count investor') %>%
mutate(count_total = n(),
count_p = ifelse(year >= investor_year_min & year <= investor_year_max, count_total/annual_total, NA)
) %>%
select(year, count_p) %>%
distinct() %>%
arrange(year)
figure_19 <- inner_join(llc_investors, building_investors, by = 'year') %>%
inner_join(value_investors, by = 'year') %>%
inner_join(count_investors, by = 'year')
#figure_19
write.csv(figure_19, "figure_19.csv")
rm(figure_19)
################ From 2023-04-01 PPT
#spat_dat_loc <- "K:/DataServices/Datasets/Boundaries/Spatial/"
#spat_dat_loc <- "S:/Network Shares/K Drive/DataServices/Datasets/Boundaries/Spatial/"
#setwd(spat_dat_loc)
setwd(export_path)
#Slide 9: Investor Purchases as Share of Total Purchases by census tract
slide_9 <- warren %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(ct_id) %>%
#count total transactions by census tract
mutate(ct_transactions = n()) %>%
#filter to investor purchases
filter(investor == "Investor") %>%
#count investor purchases by census tract and calculate %
mutate(investor_count = n(),
investor_p = investor_count/ct_transactions) %>%
select(ct_id, investor_p) %>%
distinct()
#slide_9
write.csv(slide_9, "slide_9.csv")
rm(slide_9)
#Slide 10: Healthy Neighborhood Communities - not using this
slide_10 <- warren %>%
#filter to investor years
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(municipal) %>%
#count transactions by municipality
mutate(muni_transactions = n()) %>%
#filter to investor transactions
filter(investor == "Investor") %>%
#count investor purchases by municipality and calculate %
mutate(investor_count = n(),
investor_p = investor_count/muni_transactions) %>%
select(municipal, muni_id, investor_p) %>%
distinct() %>%
arrange(municipal)
#slide_10
write.csv(slide_10, "slide_10.csv")
rm(slide_10)
#Slide 14: Share of Transactions that are Investor Purchases by MAPC Submarket
slide_14 <- warren_mapc %>%
#filter to investor year
filter(year >= investor_year_min & year <= investor_year_max) %>%
group_by(mapc_submarket) %>%
#count the total transactions by submarket
mutate(submarket_transactions = n()) %>%
group_by(investor_type_purchase, mapc_submarket) %>%
#count transactions by investor size and submarket and calculate %
mutate(investor_type_transactions = n(),
transactions_p = investor_type_transactions/submarket_transactions) %>%
select(mapc_submarket, investor_type_purchase, transactions_p) %>%
arrange(mapc_submarket) %>%
distinct() %>%
pivot_wider(names_from = 'investor_type_purchase', values_from = 'transactions_p')
#slide_14
write.csv(slide_14, "slide_14.csv")
rm(slide_14)