Skip to content

Latest commit

 

History

History
145 lines (116 loc) · 3.7 KB

README.md

File metadata and controls

145 lines (116 loc) · 3.7 KB

JournalClubAssistant: Academic Paper to Presentation Converter

JournalClubAssistant is an AI-powered tool that automatically converts academic papers (PDF) into structured PowerPoint presentations while maintaining technical accuracy and logical flow. It leverages OpenAI's GPT-4 for content analysis and generates comprehensive presentations with proper figure integration.

Features

  • Automatic extraction of paper structure and content
  • Comprehensive figure analysis and integration
  • Maintains technical accuracy and paper's logical flow
  • Rich content summarization with evidence and implications
  • Automatic PowerPoint generation with proper formatting
  • Support for multi-panel figures and technical details

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/JournalClubAssistant.git
cd pdf2ppt
  1. Create and activate a virtual environment:
python -m venv pdf2ppt
source pdf2ppt/bin/activate  # On Windows: pdf2ppt\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables: Create a .env file in the project root directory with the following content:
# OpenAI API Configuration
OPENAI_API_KEY=your_api_key_here

# Output Configuration (optional)
OUTPUT_DIR=output
FIGURE_DIR=output/figures

# Logging Configuration (optional)
LOG_LEVEL=INFO

Example project structure with .env:

pdf2ppt/
├── .env                    # Environment variables file
├── src/
│   ├── __init__.py
│   ├── content_analyzer.py
│   ├── document_processor.py
│   ├── figure_extractor.py
│   └── presentation_generator.py
├── output/
│   └── figures/
├── main.py
├── requirements.txt
└── README.md

Usage

Run the script with your PDF file:

python main.py

When prompted, enter the path to your PDF file or a URL. The script will:

  1. Extract figures from the PDF
  2. Analyze the paper's content and structure
  3. Generate a comprehensive PowerPoint presentation
  4. Save the presentation in the output directory

Project Structure

pdf2ppt/
├── src/
│   ├── __init__.py
│   ├── content_analyzer.py
│   ├── document_processor.py
│   ├── figure_extractor.py
│   └── presentation_generator.py
├── output/
│   └── figures/
├── main.py
├── requirements.txt
└── README.md

Requirements

  • Python 3.8+
  • OpenAI API key
  • Dependencies listed in requirements.txt:
    • PyMuPDF
    • opencv-python-headless
    • python-pptx
    • openai
    • python-dotenv
    • Pillow
    • numpy

Limitations

  • Requires OpenAI API access and credits
  • Processing time depends on paper length
  • Figure extraction quality depends on PDF format
  • May require manual verification for complex technical content

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • OpenAI for GPT-4 API
  • PyMuPDF for PDF processing
  • python-pptx for presentation generation
  • All contributors and users of this project

Citation

If you use this tool in your research, please cite:

@software{JournalClubAssistant2024,
  author = {Your Name},
  title = {JournalClubAssistant: Academic Paper to Presentation Converter},
  year = {2024},
  url = {https://github.com/yourusername/pdf2ppt}
}