forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdm_control_suite_example.py
71 lines (58 loc) · 2.44 KB
/
dm_control_suite_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Lint as: python3
# Copyright 2020 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""DM control suite and locomotion dataset examples.
Example:
Instructions:
> export TMP_PATH=/tmp/dataset
> export TASK_NAME=humanoid_run
> mkdir -p $TMP_PATH/$TASK_NAME
> gsutil cp gs://rl_unplugged/dm_control_suite/$TASK_NAME/train-00000-of-00100 \
$TMP_PATH/dm_control_suite/$TASK_NAME/train-00000-of-00001
> python dm_control_suite_example.py --path=$TMP_PATH \
--task_class=control_suite --task_name=$TASK_NAME
"""
from absl import app
from absl import flags
import tree
from rl_unplugged import dm_control_suite
flags.DEFINE_string('path', '/tmp/dataset', 'Path to dataset.')
flags.DEFINE_string('task_name', 'humanoid_run', 'Game.')
flags.DEFINE_enum('task_class', 'control_suite',
['humanoid', 'rodent', 'control_suite'],
'Task classes.')
FLAGS = flags.FLAGS
def main(_):
if FLAGS.task_class == 'control_suite':
task = dm_control_suite.ControlSuite(task_name=FLAGS.task_name)
elif FLAGS.task_class == 'humanoid':
task = dm_control_suite.CmuThirdParty(task_name=FLAGS.task_name)
elif FLAGS.task_class == 'rodent':
task = dm_control_suite.Rodent(task_name=FLAGS.task_name)
ds = dm_control_suite.dataset(root_path=FLAGS.path,
data_path=task.data_path,
shapes=task.shapes,
num_threads=1,
batch_size=2,
uint8_features=task.uint8_features,
num_shards=1,
shuffle_buffer_size=10)
for sample in ds.take(1):
print('Data spec')
print(tree.map_structure(lambda x: (x.dtype, x.shape), sample.data))
environment = task.environment
timestep = environment.reset()
print(tree.map_structure(lambda x: (x.dtype, x.shape), timestep.observation))
if __name__ == '__main__':
app.run(main)