forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ode.py
367 lines (299 loc) · 12.4 KB
/
main_ode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# Copyright 2019 DeepMind Technologies Limited and Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training script."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
from absl import logging
import tensorflow.compat.v1 as tf
from cs_gan import file_utils
from cs_gan import gan
from cs_gan import image_metrics
from cs_gan import utils
flags.DEFINE_integer(
'num_training_iterations', 1200000,
'Number of training iterations.')
flags.DEFINE_string(
'ode_mode', 'rk4', 'Integration method.')
flags.DEFINE_integer(
'batch_size', 64, 'Training batch size.')
flags.DEFINE_float(
'grad_reg_weight', 0.02, 'Step size for latent optimisation.')
flags.DEFINE_string(
'opt_name', 'gd', 'Name of the optimiser (gd|adam).')
flags.DEFINE_bool(
'schedule_lr', True, 'The method to project z.')
flags.DEFINE_bool(
'reg_first_grad_only', True, 'Whether only to regularise the first grad.')
flags.DEFINE_integer(
'num_latents', 128, 'The number of latents')
flags.DEFINE_integer(
'summary_every_step', 1000,
'The interval at which to log debug ops.')
flags.DEFINE_integer(
'image_metrics_every_step', 1000,
'The interval at which to log (expensive) image metrics.')
flags.DEFINE_integer(
'export_every', 10,
'The interval at which to export samples.')
# Use 50k to reproduce scores from the paper. Default to 10k here to avoid the
# runtime error caused by too large graph with 50k samples on some machines.
flags.DEFINE_integer(
'num_eval_samples', 10000,
'The number of samples used to evaluate FID/IS.')
flags.DEFINE_string(
'dataset', 'cifar', 'The dataset used for learning (cifar|mnist).')
flags.DEFINE_string(
'output_dir', '/tmp/ode_gan/gan', 'Location where to save output files.')
flags.DEFINE_float('disc_lr', 4e-2, 'Discriminator Learning rate.')
flags.DEFINE_float('gen_lr', 4e-2, 'Generator Learning rate.')
flags.DEFINE_bool(
'run_real_data_metrics', False,
'Whether or not to run image metrics on real data.')
flags.DEFINE_bool(
'run_sample_metrics', True,
'Whether or not to run image metrics on samples.')
FLAGS = flags.FLAGS
# Log info level (for Hooks).
tf.logging.set_verbosity(tf.logging.INFO)
def _copy_vars(v_list):
"""Copy variables in v_list."""
t_list = []
for v in v_list:
t_list.append(tf.identity(v))
return t_list
def _restore_vars(v_list, t_list):
"""Restore variables in v_list from t_list."""
ops = []
for v, t in zip(v_list, t_list):
ops.append(v.assign(t))
return ops
def _scale_vars(s, v_list):
"""Scale all variables in v_list by s."""
return [s * v for v in v_list]
def _acc_grads(g_sum, g_w, g):
"""Accumulate gradients in g, weighted by g_w."""
return [g_sum_i + g_w * g_i for g_sum_i, g_i in zip(g_sum, g)]
def _compute_reg_grads(gen_grads, disc_vars):
"""Compute gradients norm (this is an upper-bpund of the full-batch norm)."""
gen_norm = tf.accumulate_n([tf.reduce_sum(u * u) for u in gen_grads])
disc_reg_grads = tf.gradients(gen_norm, disc_vars)
return disc_reg_grads
def run_model(prior, images, model, disc_reg_weight):
"""Run the model with new data and samples.
Args:
prior: the noise source as the generator input.
images: images sampled from dataset.
model: a GAN model defined in gan.py.
disc_reg_weight: regularisation weight for discrmininator gradients.
Returns:
debug_ops: statistics from the model, see gan.py for more detials.
disc_grads: discriminator gradients.
gen_grads: generator gradients.
"""
generator_inputs = prior.sample(FLAGS.batch_size)
model_output = model.connect(images, generator_inputs)
optimization_components = model_output.optimization_components
disc_grads = tf.gradients(
optimization_components['disc'].loss,
optimization_components['disc'].vars)
gen_grads = tf.gradients(
optimization_components['gen'].loss,
optimization_components['gen'].vars)
if disc_reg_weight > 0.0:
reg_grads = _compute_reg_grads(gen_grads,
optimization_components['disc'].vars)
disc_grads = _acc_grads(disc_grads, disc_reg_weight, reg_grads)
debug_ops = model_output.debug_ops
return debug_ops, disc_grads, gen_grads
def update_model(model, disc_grads, gen_grads, disc_opt, gen_opt,
global_step, update_scale):
"""Update model with gradients."""
disc_vars, gen_vars = model.get_variables()
with tf.control_dependencies(gen_grads + disc_grads):
disc_update_op = disc_opt.apply_gradients(
zip(_scale_vars(update_scale, disc_grads),
disc_vars))
gen_update_op = gen_opt.apply_gradients(
zip(_scale_vars(update_scale, gen_grads),
gen_vars),
global_step=global_step)
update_op = tf.group([disc_update_op, gen_update_op])
return update_op
def main(argv):
del argv
utils.make_output_dir(FLAGS.output_dir)
data_processor = utils.DataProcessor()
# Compute the batch-size multiplier
if FLAGS.ode_mode == 'rk2':
batch_mul = 2
elif FLAGS.ode_mode == 'rk4':
batch_mul = 4
else:
batch_mul = 1
images = utils.get_train_dataset(data_processor, FLAGS.dataset,
int(FLAGS.batch_size * batch_mul))
image_splits = tf.split(images, batch_mul)
logging.info('Generator learning rate: %d', FLAGS.gen_lr)
logging.info('Discriminator learning rate: %d', FLAGS.disc_lr)
global_step = tf.train.get_or_create_global_step()
# Construct optimizers.
if FLAGS.opt_name == 'adam':
disc_opt = tf.train.AdamOptimizer(FLAGS.disc_lr, beta1=0.5, beta2=0.999)
gen_opt = tf.train.AdamOptimizer(FLAGS.gen_lr, beta1=0.5, beta2=0.999)
elif FLAGS.opt_name == 'gd':
if FLAGS.schedule_lr:
gd_disc_lr = tf.train.piecewise_constant(
global_step,
values=[FLAGS.disc_lr / 4., FLAGS.disc_lr, FLAGS.disc_lr / 2.],
boundaries=[500, 400000])
gd_gen_lr = tf.train.piecewise_constant(
global_step,
values=[FLAGS.gen_lr / 4., FLAGS.gen_lr, FLAGS.gen_lr / 2.],
boundaries=[500, 400000])
else:
gd_disc_lr = FLAGS.disc_lr
gd_gen_lr = FLAGS.gen_lr
disc_opt = tf.train.GradientDescentOptimizer(gd_disc_lr)
gen_opt = tf.train.GradientDescentOptimizer(gd_gen_lr)
else:
raise ValueError('Unknown ODE mode!')
# Create the networks and models.
generator = utils.get_generator(FLAGS.dataset)
metric_net = utils.get_metric_net(FLAGS.dataset, use_sn=False)
model = gan.GAN(metric_net, generator)
prior = utils.make_prior(FLAGS.num_latents)
# Setup ODE parameters.
if FLAGS.ode_mode == 'rk2':
ode_grad_weights = [0.5, 0.5]
step_scale = [1.0]
elif FLAGS.ode_mode == 'rk4':
ode_grad_weights = [1. / 6., 1. / 3., 1. / 3., 1. / 6.]
step_scale = [0.5, 0.5, 1.]
elif FLAGS.ode_mode == 'euler':
# Euler update
ode_grad_weights = [1.0]
step_scale = []
else:
raise ValueError('Unknown ODE mode!')
# Extra steps for RK updates.
num_extra_steps = len(step_scale)
if FLAGS.reg_first_grad_only:
first_reg_weight = FLAGS.grad_reg_weight / ode_grad_weights[0]
other_reg_weight = 0.0
else:
first_reg_weight = FLAGS.grad_reg_weight
other_reg_weight = FLAGS.grad_reg_weight
debug_ops, disc_grads, gen_grads = run_model(prior, image_splits[0],
model, first_reg_weight)
disc_vars, gen_vars = model.get_variables()
final_disc_grads = _scale_vars(ode_grad_weights[0], disc_grads)
final_gen_grads = _scale_vars(ode_grad_weights[0], gen_grads)
restore_ops = []
# Preparing for further RK steps.
if num_extra_steps > 0:
# copy the variables before they are changed by update_op
saved_disc_vars = _copy_vars(disc_vars)
saved_gen_vars = _copy_vars(gen_vars)
# Enter RK loop.
with tf.control_dependencies(saved_disc_vars + saved_gen_vars):
step_deps = []
for i_step in range(num_extra_steps):
with tf.control_dependencies(step_deps):
# Compute gradient steps for intermediate updates.
update_op = update_model(
model, disc_grads, gen_grads, disc_opt, gen_opt,
None, step_scale[i_step])
with tf.control_dependencies([update_op]):
_, disc_grads, gen_grads = run_model(
prior, image_splits[i_step + 1], model, other_reg_weight)
# Accumlate gradients for final update.
final_disc_grads = _acc_grads(final_disc_grads,
ode_grad_weights[i_step + 1],
disc_grads)
final_gen_grads = _acc_grads(final_gen_grads,
ode_grad_weights[i_step + 1],
gen_grads)
# Make new restore_op for each step.
restore_ops = []
restore_ops += _restore_vars(disc_vars, saved_disc_vars)
restore_ops += _restore_vars(gen_vars, saved_gen_vars)
step_deps = restore_ops
with tf.control_dependencies(restore_ops):
update_op = update_model(
model, final_disc_grads, final_gen_grads, disc_opt, gen_opt,
global_step, 1.0)
samples = generator(prior.sample(FLAGS.batch_size), is_training=False)
# Get data needed to compute FID. We also compute metrics on
# real data as a sanity check and as a reference point.
eval_real_data = utils.get_real_data_for_eval(FLAGS.num_eval_samples,
FLAGS.dataset,
split='train')
def sample_fn(x):
return utils.optimise_and_sample(x, module=model,
data=None, is_training=False)[0]
if FLAGS.run_sample_metrics:
sample_metrics = image_metrics.get_image_metrics_for_samples(
eval_real_data, sample_fn,
prior, data_processor,
num_eval_samples=FLAGS.num_eval_samples)
else:
sample_metrics = {}
if FLAGS.run_real_data_metrics:
data_metrics = image_metrics.get_image_metrics(
eval_real_data, eval_real_data)
else:
data_metrics = {}
sample_exporter = file_utils.FileExporter(
os.path.join(FLAGS.output_dir, 'samples'))
# Hooks.
debug_ops['it'] = global_step
# Abort training on Nans.
nan_disc_hook = tf.train.NanTensorHook(debug_ops['disc_loss'])
nan_gen_hook = tf.train.NanTensorHook(debug_ops['gen_loss'])
# Step counter.
step_conter_hook = tf.train.StepCounterHook()
checkpoint_saver_hook = tf.train.CheckpointSaverHook(
checkpoint_dir=utils.get_ckpt_dir(FLAGS.output_dir), save_secs=10 * 60)
loss_summary_saver_hook = tf.train.SummarySaverHook(
save_steps=FLAGS.summary_every_step,
output_dir=os.path.join(FLAGS.output_dir, 'summaries'),
summary_op=utils.get_summaries(debug_ops))
metrics_summary_saver_hook = tf.train.SummarySaverHook(
save_steps=FLAGS.image_metrics_every_step,
output_dir=os.path.join(FLAGS.output_dir, 'summaries'),
summary_op=utils.get_summaries(sample_metrics))
hooks = [checkpoint_saver_hook, metrics_summary_saver_hook,
nan_disc_hook, nan_gen_hook, step_conter_hook,
loss_summary_saver_hook]
# Start training.
with tf.train.MonitoredSession(hooks=hooks) as sess:
logging.info('starting training')
for key, value in sess.run(data_metrics).items():
logging.info('%s: %d', key, value)
for i in range(FLAGS.num_training_iterations):
sess.run(update_op)
if i % FLAGS.export_every == 0:
samples_np, data_np = sess.run([samples, image_splits[0]])
# Create an object which gets data and does the processing.
data_np = data_processor.postprocess(data_np)
samples_np = data_processor.postprocess(samples_np)
sample_exporter.save(samples_np, 'samples')
sample_exporter.save(data_np, 'data')
if __name__ == '__main__':
tf.enable_resource_variables()
app.run(main)