-
Notifications
You must be signed in to change notification settings - Fork 790
/
Copy pathtrain.py
102 lines (96 loc) · 3.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import glob
import tensorflow as tf
import neuralgym as ng
from inpaint_model import InpaintCAModel
def multigpu_graph_def(model, FLAGS, data, gpu_id=0, loss_type='g'):
with tf.device('/cpu:0'):
images = data.data_pipeline(FLAGS.batch_size)
if gpu_id == 0 and loss_type == 'g':
_, _, losses = model.build_graph_with_losses(
FLAGS, images, FLAGS, summary=True, reuse=True)
else:
_, _, losses = model.build_graph_with_losses(
FLAGS, images, FLAGS, reuse=True)
if loss_type == 'g':
return losses['g_loss']
elif loss_type == 'd':
return losses['d_loss']
else:
raise ValueError('loss type is not supported.')
if __name__ == "__main__":
# training data
FLAGS = ng.Config('inpaint.yml')
img_shapes = FLAGS.img_shapes
with open(FLAGS.data_flist[FLAGS.dataset][0]) as f:
fnames = f.read().splitlines()
if FLAGS.guided:
fnames = [(fname, fname[:-4] + '_edge.jpg') for fname in fnames]
img_shapes = [img_shapes, img_shapes]
data = ng.data.DataFromFNames(
fnames, img_shapes, random_crop=FLAGS.random_crop,
nthreads=FLAGS.num_cpus_per_job)
images = data.data_pipeline(FLAGS.batch_size)
# main model
model = InpaintCAModel()
g_vars, d_vars, losses = model.build_graph_with_losses(FLAGS, images)
# validation images
if FLAGS.val:
with open(FLAGS.data_flist[FLAGS.dataset][1]) as f:
val_fnames = f.read().splitlines()
if FLAGS.guided:
val_fnames = [
(fname, fname[:-4] + '_edge.jpg') for fname in val_fnames]
# progress monitor by visualizing static images
for i in range(FLAGS.static_view_size):
static_fnames = val_fnames[i:i+1]
static_images = ng.data.DataFromFNames(
static_fnames, img_shapes, nthreads=1,
random_crop=FLAGS.random_crop).data_pipeline(1)
static_inpainted_images = model.build_static_infer_graph(
FLAGS, static_images, name='static_view/%d' % i)
# training settings
lr = tf.get_variable(
'lr', shape=[], trainable=False,
initializer=tf.constant_initializer(1e-4))
d_optimizer = tf.train.AdamOptimizer(lr, beta1=0.5, beta2=0.999)
g_optimizer = d_optimizer
# train discriminator with secondary trainer, should initialize before
# primary trainer.
# discriminator_training_callback = ng.callbacks.SecondaryTrainer(
discriminator_training_callback = ng.callbacks.SecondaryMultiGPUTrainer(
num_gpus=FLAGS.num_gpus_per_job,
pstep=1,
optimizer=d_optimizer,
var_list=d_vars,
max_iters=1,
grads_summary=False,
graph_def=multigpu_graph_def,
graph_def_kwargs={
'model': model, 'FLAGS': FLAGS, 'data': data, 'loss_type': 'd'},
)
# train generator with primary trainer
# trainer = ng.train.Trainer(
trainer = ng.train.MultiGPUTrainer(
num_gpus=FLAGS.num_gpus_per_job,
optimizer=g_optimizer,
var_list=g_vars,
max_iters=FLAGS.max_iters,
graph_def=multigpu_graph_def,
grads_summary=False,
gradient_processor=None,
graph_def_kwargs={
'model': model, 'FLAGS': FLAGS, 'data': data, 'loss_type': 'g'},
spe=FLAGS.train_spe,
log_dir=FLAGS.log_dir,
)
# add all callbacks
trainer.add_callbacks([
discriminator_training_callback,
ng.callbacks.WeightsViewer(),
ng.callbacks.ModelRestorer(trainer.context['saver'], dump_prefix=FLAGS.model_restore+'/snap', optimistic=True),
ng.callbacks.ModelSaver(FLAGS.train_spe, trainer.context['saver'], FLAGS.log_dir+'/snap'),
ng.callbacks.SummaryWriter((FLAGS.val_psteps//1), trainer.context['summary_writer'], tf.summary.merge_all()),
])
# launch training
trainer.train()