-
Notifications
You must be signed in to change notification settings - Fork 432
/
Copy pathinference.py
65 lines (50 loc) · 1.77 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
from PIL import Image
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from models.make_target_model import make_target_model
class Config:
pass
cfg = Config()
cfg.ori_shape = (256, 256)
cfg.image_crop_size = (224, 224)
cfg.normalize_mean = [0.5, 0.5, 0.5]
cfg.normalize_std = [0.5, 0.5, 0.5]
cfg.last_stride = 2
cfg.num_classes = 8
cfg.num_branches = cfg.num_classes + 1
cfg.backbone = 'resnet18' # 'resnet18', 'resnet50_ibn'
cfg.pretrained = "./weights/AffectNet_res18_acc0.6285.pth"
cfg.pretrained_choice = '' # '' or 'convert'
cfg.bnneck = True
cfg.BiasInCls = False
def inference(model, img_path, transform, is_cuda=True):
img = Image.open(img_path).convert('RGB')
img_tensor = transform(img).unsqueeze(0)
if is_cuda:
img_tensor = img_tensor.cuda()
model.eval()
if is_cuda:
model = model.cuda()
pred = model(img_tensor)
prob = F.softmax(pred, dim=-1)
idx = torch.argmax(prob.cpu()).item()
key = {0: 'Neutral', 1:'Happy', 2:'Sad', 3:'Surprise', 4:'Fear', 5:'Disgust', 6:'Anger', 7:'Contempt'}
print('Predicted: {}'.format(key[idx]))
print('Probabilities:')
for i in range(cfg.num_classes):
print('{} ----> {}'.format(key[i], round(prob[0,i].item(), 4)))
if __name__ == '__main__':
img_path = './images/test1.jpg'
transform = T.Compose([
T.Resize(cfg.ori_shape),
T.CenterCrop(cfg.image_crop_size),
T.ToTensor(),
T.Normalize(mean=cfg.normalize_mean, std=cfg.normalize_std),
])
print('Building model......')
model = make_target_model(cfg)
model.load_param(cfg)
print('Loaded pretrained model from {0}'.format(cfg.pretrained))
inference(model, img_path, transform, is_cuda=True)