forked from dasguptar/treelstm.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·189 lines (159 loc) · 7.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#! /usr/bin/env python3
from __future__ import print_function
import os, time, argparse
from tqdm import tqdm
import numpy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable as Var
import mkl
import numpy as np
import random
# IMPORT CONSTANTS
import Constants
# NEURAL NETWORK MODULES/LAYERS
from model import *
# DATA HANDLING CLASSES
from treenode import TreeNode
from vocab import Vocab
# DATASET CLASS FOR SICK DATASET
from dataset import SICKDataset
# METRICS CLASS FOR EVALUATION
from metrics import Metrics
# UTILITY FUNCTIONS
from utils import load_word_vectors, build_vocab
# CONFIG PARSER
from config import parse_args
# TRAIN AND TEST HELPER FUNCTIONS
from trainer import Trainer
# MAIN BLOCK
def main():
global args
args = parse_args()
mkl.set_num_threads(1)
args.cuda = args.cuda and torch.cuda.is_available()
if args.sparse and args.wd!=0:
print('Sparsity and weight decay are incompatible, pick one!')
exit()
print(args)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
train_dir = os.path.join(args.data,'train/')
dev_dir = os.path.join(args.data,'dev/')
test_dir = os.path.join(args.data,'test/')
# write unique words from all token files
token_files_a = [os.path.join(split,'a.toks') for split in [train_dir,dev_dir,test_dir]]
token_files_b = [os.path.join(split,'b.toks') for split in [train_dir,dev_dir,test_dir]]
token_files = token_files_a+token_files_b
sick_vocab_file = os.path.join(args.data,'sick.vocab')
build_vocab(token_files, sick_vocab_file)
# get vocab object from vocab file previously written
vocab = Vocab(filename=sick_vocab_file, data=[Constants.PAD_WORD, Constants.UNK_WORD, Constants.BOS_WORD, Constants.EOS_WORD])
print('==> SICK vocabulary size : %d ' % vocab.size())
# load SICK dataset splits
train_file = os.path.join(args.data,'sick_train.pth')
if os.path.isfile(train_file):
train_dataset = torch.load(train_file)
else:
train_dataset = SICKDataset(train_dir, vocab, args.num_classes)
torch.save(train_dataset, train_file)
print('==> Size of train data : %d ' % len(train_dataset))
dev_file = os.path.join(args.data,'sick_dev.pth')
if os.path.isfile(dev_file):
dev_dataset = torch.load(dev_file)
else:
dev_dataset = SICKDataset(dev_dir, vocab, args.num_classes)
torch.save(dev_dataset, dev_file)
print('==> Size of dev data : %d ' % len(dev_dataset))
test_file = os.path.join(args.data,'sick_test.pth')
if os.path.isfile(test_file):
test_dataset = torch.load(test_file)
else:
test_dataset = SICKDataset(test_dir, vocab, args.num_classes)
torch.save(test_dataset, test_file)
print('==> Size of test data : %d ' % len(test_dataset))
# initialize model, criterion/loss_function, optimizer
model = SimilarityTreeLSTM(
args.encoder_type,
args.cuda, vocab.size(),
args.input_dim, args.mem_dim,
args.hidden_dim, args.num_classes,
args.sparse,
args
)
criterion = nn.KLDivLoss()
if args.cuda:
model.cuda(), criterion.cuda()
trainable_parameters = [param for param in model.parameters() if param.requires_grad]
if args.optim=='adam':
optimizer = optim.Adam(trainable_parameters, lr=args.lr, weight_decay=args.wd)
elif args.optim=='adagrad':
optimizer = optim.Adagrad(trainable_parameters, lr=args.lr, weight_decay=args.wd)
elif args.optim=='sgd':
optimizer = optim.SGD(trainable_parameters, lr=args.lr, weight_decay=args.wd)
metrics = Metrics(args.num_classes)
# for words common to dataset vocab and GLOVE, use GLOVE vectors
# for other words in dataset vocab, use random normal vectors
emb_file = os.path.join(args.data, 'sick_embed.pth')
if os.path.isfile(emb_file):
emb = torch.load(emb_file)
else:
# load glove embeddings and vocab
glove_vocab, glove_emb = load_word_vectors(os.path.join(args.glove,'glove.840B.300d'))
print('==> GLOVE vocabulary size: %d ' % glove_vocab.size())
emb = torch.Tensor(vocab.size(),glove_emb.size(1)).normal_(-0.05,0.05)
# zero out the embeddings for padding and other special words if they are absent in vocab
for idx, item in enumerate([Constants.PAD_WORD, Constants.UNK_WORD, Constants.BOS_WORD, Constants.EOS_WORD]):
# TODO '<s>', '</s>' these tokens present in glove w2v but probably with different meaning.
# though they are not currently used
emb[idx].zero_()
for word in vocab.labelToIdx.keys():
if word in glove_vocab.labelToIdx.keys():
emb[vocab.getIndex(word)] = glove_emb[glove_vocab.getIndex(word)]
torch.save(emb, emb_file)
# plug these into embedding matrix inside model
if args.cuda:
emb = emb.cuda()
model.encoder.emb.state_dict()['weight'].copy_(emb)
# create trainer object for training and testing
trainer = Trainer(args, model, criterion, optimizer)
metric_functions = [metrics.pearson, metrics.mse]
for epoch in range(args.epochs):
train_loss = trainer.train(train_dataset)
train_loss, train_pred = trainer.test(train_dataset)
dev_loss, dev_pred = trainer.test(dev_dataset)
test_loss, test_pred = trainer.test(test_dataset)
pearson_stats, mse_stats = get_median_and_confidence_interval(
train_pred, train_dataset.labels, metric_functions)
print_results("Train", train_loss, pearson_stats, mse_stats)
pearson_stats, mse_stats = get_median_and_confidence_interval(
dev_pred, dev_dataset.labels, metric_functions)
print_results("Dev", dev_loss, pearson_stats, mse_stats)
pearson_stats, mse_stats = get_median_and_confidence_interval(
test_pred, test_dataset.labels, metric_functions)
print_results("Test", test_loss, pearson_stats, mse_stats)
def print_results(dataset_name, loss, pearson_stats, mse_stats):
pearson_median = pearson_stats[1]
pearson_iqr = pearson_stats[2] - pearson_stats[0]
mse_median = mse_stats[1]
mse_iqr = mse_stats[2] - mse_stats[0]
print('==> {} loss : {:.6} \t'.format(dataset_name, loss), end="")
print('{} Pearson : {:.6} ({:.6}) \t'.format(dataset_name, pearson_median, pearson_iqr), end="")
print('{} MSE : {:.6} ({:.6}) \t'.format(dataset_name, mse_median, mse_iqr), end="\n")
def get_median_and_confidence_interval(predictions, targets, metric_functions_list, bootstrap_size = 2000):
metric_statistics = np.ndarray([len(metric_functions_list), bootstrap_size])
num_of_samples = predictions.size()[0]
for bs_i in range(bootstrap_size):
bs_ids = torch.LongTensor(np.random.choice(range(num_of_samples), num_of_samples))
bs_predictions = predictions[bs_ids]
bs_targets = targets[bs_ids]
for m_i, m_func in enumerate(metric_functions_list):
metric_statistics[m_i, bs_i] = m_func(bs_predictions, bs_targets)
metric_statistics = np.percentile(metric_statistics, [25, 50, 75], axis=1).transpose()
return metric_statistics
if __name__ == "__main__":
main()