-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccs_for_couchdb2neo4j.py
643 lines (620 loc) · 23.2 KB
/
accs_for_couchdb2neo4j.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#!/usr/bin/python
#
# Contains accessories (Some functions and some dicts) to convert from OSDF syntax to what will be loaded in Neo4j.
# Mapping from OSDF node type to Neo4J node type (Case, File, Tags) or MIMARKS, Mixs
nodes = {
'project': 'Case',
'study': 'Case',
'subject': 'Case',
'subject_attr': 'Case',
'subject_attribute': 'Case',
'visit': 'Case',
'visit_attr': 'Case',
'visit_attribute': 'Case',
'sample': 'Case',
'sample_attr': 'Case',
'sample_attribute': 'Case',
'wgs_dna_prep': 'File',
'host_seq_prep': 'File',
'wgs_raw_seq_set': 'File',
'wgs_raw_seq_set_private': 'File',
'host_wgs_raw_seq_set': 'File',
'microb_transcriptomics_raw_seq_set': 'File',
'host_transcriptomics_raw_seq_set': 'File',
'wgs_assembled_seq_set': 'File',
'viral_seq_set': 'File',
'annotation': 'File',
'clustered_seq_set': 'File',
'16s_dna_prep': 'File',
'16s_raw_seq_set': 'File',
'16s_trimmed_seq_set': 'File',
'microb_assay_prep': 'File',
'host_assay_prep': 'File',
'proteome': 'File',
'metabolome': 'File',
'lipidome': 'File',
'cytokine': 'File',
'abundance_matrix': 'File',
'tags': 'Tags',
'mimarks': 'MIMARKS',
'mixs': 'Mixs',
'reference_genome_project_catalog_entry': 'File',
'host_epigenetics_raw_seq_set': 'File',
'serology': 'File',
'metagenomic_project_catalog_entry': 'File',
'alignment': 'File',
'proteome_nonpride': 'File',
'host_variant_call': 'File'
}
# OSDF node types that map to Neo4J File nodes
file_nodes = {}
for n in nodes:
if nodes[n] == 'File':
file_nodes[n] = True
# These are all the different edge types present in the schema.
# Note that 'subset_of' will be removed after loading in order to
# comply with iHMP schema.
edges = {
'part_of': 'PART_OF',
'subset_of': 'SUBSET_OF',
'participates_in': 'PARTICIPATES_IN',
'associated_with': 'ASSOCIATED_WITH',
'by': 'BY',
'collected_during': 'COLLECTED_DURING',
'prepared_from': 'PREPARED_FROM',
'sequenced_from': 'SEQUENCED_FROM',
'derived_from': 'DERIVED_FROM',
'computed_from': 'COMPUTED_FROM',
'has_tag': 'HAS_TAG',
'has_mimarks': 'HAS_MIMARKS',
'has_mixs': 'HAS_MIXS'
}
# Known edges used in the dump scripts
definitive_edges = {
'part_of': 'Case',
'subset_of': 'Case',
'participates_in': 'Case',
'by': 'Case',
'associated_with': 'Case',
'collected_during': 'Case',
'prepared_from': 'Case',
'has_tag': 'Tags',
'has_mimarks': 'MIMARKS',
'has_mixs': 'Mixs'
}
# Known edges used in the mirror script
definitive_edges2 = {
'part_of': 'Case',
'subset_of': 'Case',
'participates_in': 'Case',
'by': 'Case',
'associated_with': 'Case',
'collected_during': 'Case',
'prepared_from': 'Case',
'computed_from': 'File'
}
# Remap the study names using these values
study_name_dict = {
'Healthy Human Subjects':'HHS',
'Human microbiome project 16S production phase I.':'16S-PP1',
'Human microbiome project 16S production phase II.':'16S-PP2',
'Skin Microbiome in Disease States: Atopic Dermatitis and Immunodeficiency.':'16S-SM-ADI',
'The Thrifty Microbiome: The Role of the Gut Microbiota in Obesity in the Amish.':'16S-GM-AO',
"Diet, Genetic Factors, and the Gut Microbiome in Crohn's Disease.":'16S-GM-CD2',
'Foregut Microbiome in Development of Esophageal Adenocarcinoma.':'16S-GM-EA',
'The Role of the Gut Microbiota in Ulcerative Colitis, Targeted Gene Survey.':'16S-GM-UC',
'The Human Microbiome in Pediatric Abdominal Pain and Intestinal Inflammation.':'16S-GM-CGD',
"Effect of Crohn's Disease Risk Alleles on Enteric Microbiota.":'16S-GM-CD',
'Evaluation of the Cutaneous Microbiome in Psoriasis.':'16S-SM-P',
'The Neonatal Microbiome and Necrotizing Enterocolitis.':'16S-GM-NE',
'The Microbial Ecology of Bacterial Vaginosis: A Fine Scale Resolution Metagenomic Study.':'16S-VM-BV',
'The Vaginal Microbiome: Disease, Genetics and the Environment, 16S Gene Survey.':'16S-VM-DGE',
'Urethral Microbiome of Adolescent Males.':'16S-UM-AD',
"Metagenomic Analysis of the Structure and Function of the Human Gut Microbiota in Crohn's Disease.":'WGS-GM-CD',
'The Role of the Gut Microbiota in Ulcerative Colitis, Whole Metagenome Sequencing Project.':'WGS-GM-UC',
'The Human Virome in Children And Its Relationship to Febrile Illness.':'WGS-VIR-FE',
'Human microbiome project WGS production phase II.':'WGS-PP2',
'Human microbiome project WGS production phase I.':'WGS-PP1',
'ibdmdb':'IBDMDB',
'momspi':'MOMS-PI',
'Inflammatory Bowel Disease Multi-omics Database (IBDMDB)':'IBDMDB',
'prediabetes':'T2D'
}
# Remap data format values
file_format_dict = {
'sff':'Standard Flowgram File',
'peptide_fsa':'Peptide FASTA',
'gff3':'GFF3',
'nucleotide_fsa':'Nucleotide FASTA',
'null':'null',
'fastq':'FASTQ',
'biom':'Biological Observation Matrix',
'fasta':'FASTA',
'csv':'CSV',
'mzXML':'Mass Spectroscopy Proteomics'
}
# Remap body product values
body_product_dict = {
'Feces [FMA:64183]':'feces',
'Saliva [FMA:59862]':'saliva',
'vaginal mucosa [UBERON:0004983]':'vaginal mucosa',
'Stool':'feces',
'stool':'feces',
'saliva [UBERON:0001836]':'saliva',
'cervical mucus [UBERON:0012248]':'cervical mucus',
'feces [UBERON:0001988]':'feces',
'blood':'blood',
'Nasal':'nasal',
'urinary_tract':'urinary tract',
'nasal':'nasal'
}
# Need this to add consistency to the body sites for query purposes.
body_site_dict = {
'abdomen': 'abdomen [FMA:9577]',
'antecubital_fossa': 'cubital fossa [FMA:39848]',
'anterior_nares': 'external naris [FMA:59645]',
'attached_keratinized_gingiva': 'gingiva [FMA:59762]',
'back': 'back [FMA:14181]',
'blood': 'blood cell [FMA:62844]',
'buccal_mucosa': 'buccal mucosa [FMA:59785]',
'Buccal mucosa [FMA:59785]': 'buccal mucosa [FMA:59785]',
'cervix': 'cervix of uterus [FMA:17740]',
'Dorsum of tongue [FMA:54651]': 'dorsum of tongue [FMA:54651]',
'elbow': 'elbow [FMA:24901]',
'External naris [FMA:59645]': 'external naris [FMA:59645]',
'FMA:276108': 'right nasal cavity [FMA:276108]',
'FMA:326482': 'urinary tract [FMA:326482]',
'FMA:64183': 'feces [FMA:64183]',
'FMA:86713': 'peripheral blood mononuclear cell [FMA:86713]',
'FMA:7842': 'angle of seventh rib [FMA:7842]',
'foot': 'foot [FMA:9664]',
'forearm': 'forearm [FMA:9663]',
'Gastrointestinal tract [FMA:71132]': 'gastrointestinal tract [FMA:71132]',
'gingiva [FMA:59762]': 'gingiva [FMA:59762]',
'Gingiva [FMA:59762]': 'gingiva [FMA:59762]',
'gut': 'gastrointestinal tract [FMA:71132]',
'hand': 'hand [FMA:9712]',
'hard_palate': 'hard palate [FMA:55023]',
'Hard palate [FMA:55023]': 'hard palate [FMA:55023]',
'head': 'head [FMA:7154]',
'ileal_pouch': 'ileum [FMA:7208]',
'ileum': 'ileum [FMA:7208]',
'knee': 'knee [FMA:24974]',
'left_antecubital_fossa': 'left cubital fossa [FMA:39850]',
'left_retroauricular_crease': 'skin of left auriculotemporal part of head [FMA:70332]',
'leg': 'leg [FMA:24979]',
'mid_vagina': 'vagina [FMA:19949]',
'nare': 'external naris [FMA:59645]',
'nasal': 'nasal cavity [FMA:54378]',
'nasopharynx': 'nasopharynx [FMA:54878]',
'Nasopharynx [FMA:54878]': 'nasopharynx [FMA:54878]',
'oral_cavity': 'oral cavity [FMA:20292]',
'Oral cavity [FMA:20292]': 'oral cavity [FMA:20292]',
'Orifice of vagina [FMA:19984]': 'orifice of vagina [FMA:19984]',
'Palantine tonsil [FMA:9610]': 'palatine tonsil [FMA:9610]',
'Palatine tonsil [FMA:9610]': 'palatine tonsil [FMA:9610]',
'palatine_tonsils': 'palatine tonsil [FMA:9610]',
'perianal_region': 'perianal space [FMA:29719]',
'Plasma [FMA:62970]': 'plasma [FMA:62970]',
'popliteal_fossa': 'popliteal fossa [FMA:22525]',
'posterior_fornix': 'posterior fornix of vagina [FMA:19987]',
'Posterior fornix of vagina [FMA:19987]': 'posterior fornix of vagina [FMA:19987]',
'rectal': 'rectum [FMA:14544]',
'right_antecubital_fossa': 'right cubital fossa [FMA:39849]',
'right cubital fossa [FMA:39849]': 'right cubital fossa [FMA:39849]',
'right_retroauricular_crease': 'skin of right auriculotemporal part of head [FMA:70331]',
'saliva': 'portion of saliva [FMA:59862]',
'scalp': 'scalp [FMA:46494]',
'shin': 'anterior part of leg [FMA:24985]',
'shoulder': 'shoulder [FMA:25202]',
'Skin of left auriculotemporal part of head [FMA:70332]': 'skin of left auriculotemporal part of head [FMA:70332]',
'Skin of right auriculotemporal part of head [FMA:70331]': 'skin of right auriculotemporal part of head [FMA:70331]',
'stool': 'feces [FMA:64183]',
'subgingival_plaque': 'gingiva [FMA:59762]',
'supragingival_plaque': 'gingiva [FMA:59762]',
'test': 'test',
'thigh': 'thigh [FMA:24967]',
'throat': 'throat [FMA:228738]',
'Throat [FMA:228738]': 'throat [FMA:228738]',
'tongue_dorsum': 'dorsum of tongue [FMA:54651]',
'unknown': 'unknown',
'urethra': 'urethra [FMA:19667]',
'urinary_tract': 'urinary tract [FMA:326482]',
'Vagina [FMA:19949]': 'vagina [FMA:19949]',
'vaginal': 'vagina [FMA:19949]',
'vaginal_introitus': 'orifice of vagina [FMA:19984]',
'volar_forearm': 'forearm [FMA:9663]',
'wall_of_vagina': 'wall of vagina [FMA:19971]',
}
# A dict that purges the FMA code from the data
fma_free_body_site_dict = {
'abdomen': 'abdomen',
'antecubital_fossa': 'cubital fossa',
'anterior_nares': 'external naris',
'ascending_colon': 'ascending colon',
'attached_keratinized_gingiva': 'gingiva',
'back': 'back',
'blood': 'blood cell',
'buccal_mucosa': 'buccal mucosa',
'Buccal mucosa [FMA:59785]': 'buccal mucosa',
'cerebrospinal_fluid': 'cerebrospinal fluid',
'cervix': 'cervix of uterus',
'descending_colon': 'descending colon',
'Dorsum of tongue [FMA:54651]': 'dorsum of tongue',
'elbow': 'elbow',
'External naris [FMA:59645]': 'external naris',
'FMA:276108': 'right nasal cavity',
'FMA:326482': 'urinary tract',
'FMA:64183': 'feces',
'FMA:86713': 'peripheral blood mononuclear cell',
'FMA:7842': 'angle of seventh rib',
'foot': 'foot',
'forearm': 'forearm',
'gall_bladder': 'gall bladder',
'gastric_antrum': 'gastric antrum',
'Gastrointestinal tract [FMA:71132]': 'gastrointestinal tract',
'gingiva [FMA:59762]': 'gingiva',
'Gingiva [FMA:59762]': 'gingiva',
'gingival_crevices': 'gingiva',
'gut': 'gastrointestinal tract',
'hand': 'hand',
'hard_palate': 'hard palate',
'Hard palate [FMA:55023]': 'hard palate',
'head': 'head',
'ileal_pouch': 'ileum',
'ileal-anal_pouch': 'ileal-anal pouch',
'ileum': 'ileum',
'knee': 'knee',
'left_antecubital_fossa': 'left cubital fossa',
'left_arm': 'left arm',
'left_retroauricular_crease': 'left retroauricular crease',
'leg': 'leg',
'lung_aspirate': 'lung aspirate',
'lymph_node': 'lymph node',
'mid_vagina': 'vagina',
'nare': 'external naris',
'nasal': 'nasal cavity',
'nasopharynx': 'nasopharynx',
'Nasopharynx [FMA:54878]': 'nasopharynx',
'oral_cavity': 'oral cavity',
'Oral cavity [FMA:20292]': 'oral cavity',
'Orifice of vagina [FMA:19984]': 'orifice of vagina',
'Palantine tonsil [FMA:9610]': 'palatine tonsil',
'Palatine tonsil [FMA:9610]': 'palatine tonsil',
'palatine_tonsils': 'palatine tonsil',
'perianal_region': 'perianal space',
'Plasma [FMA:62970]': 'plasma',
'popliteal_fossa': 'popliteal fossa',
'posterior_fornix': 'posterior fornix of vagina',
'Posterior fornix of vagina [FMA:19987]': 'posterior fornix of vagina',
'rectal': 'rectum',
'respiratory_tract': 'respiratory tract',
'right_antecubital_fossa': 'right cubital fossa',
'right cubital fossa [FMA:39849]': 'right cubital fossa',
'right_retroauricular_crease': 'right retroauricular crease',
'saliva': 'portion of saliva',
'scalp': 'scalp',
'shin': 'anterior part of leg',
'shoulder': 'shoulder',
'sigmoid_colon': 'sigmoid colon',
'Skin of left auriculotemporal part of head [FMA:70332]': 'left retroauricular crease',
'Skin of right auriculotemporal part of head [FMA:70331]': 'right retroauricular crease',
'spinal_cord': 'spinal cord',
'stool': 'feces',
'subgingival_plaque': 'gingiva',
'supragingival_plaque': 'gingiva',
'synovial_fluid': 'synovial fluid',
'terminal_ileum': 'terminal ileum',
'thigh': 'thigh',
'throat': 'throat',
'Throat [FMA:228738]': 'throat',
'tongue_dorsum': 'dorsum of tongue',
'transverse_colon': 'transverse colon',
'unknown': 'unknown',
'upper_respiratory_tract': 'upper respiratory tract',
'urethra': 'urethra',
'urinary_tract': 'urinary tract',
'Vagina [FMA:19949]': 'vagina',
'vaginal': 'vagina',
'vaginal_introitus': 'orifice of vagina',
'volar_forearm': 'forearm',
'wall_of_vagina': 'wall of vagina',
}
# be explicit about which metadata makes it through the _attr nodes so as not
# to be redundant with information like study_name
meta_to_keep = {
'30m_gluc',
'60m_gluc',
'abdominal_pain',
'abx',
'activity_30d',
'activity_3m',
'activity_change_30d',
'activity_change_3m',
'acute_dis',
'aerobics',
'age',
'alcohol',
'allergies',
'anger',
'arthralgia',
'asthma',
'beans',
'biscuit',
'bmi',
'bowel_day',
'bowel_night',
'bread',
'bread_spread',
'breadrolls',
'breakfast_amt',
'breakfast_food',
'breakfast_tod',
'cad',
'cancer',
'cancer_mtc',
'cereal',
'cereal_type',
'cheese',
'chemo',
'chest_pain',
'chf',
'chips_crisps',
'chronic_dis',
'claudication',
'colonoscopy',
'comment',
'confident',
'contact',
'control',
'coping',
'current',
'dairy',
'diabetes',
'diag_other',
'diarrhea',
'diet_drinks',
'difficulties',
'dinner_amt',
'dinner_food',
'dinner_tod',
'duration',
'dyspnea',
'education',
'eggs',
'ery_nodosum',
'family_history',
'fast_gluc',
'father',
'fecalcal',
'fever',
'fish',
'fish_count',
'fish_oil',
'fish_white',
'fruit',
'fruit_count',
'gallbladder',
'going_your_way',
'grains',
'hbi',
'hbi_total',
'height',
'hosp',
'hyperlipidemia',
'hypertension',
'ice_cream',
'illicit_drug',
'immunosupp',
'irritation',
'juice',
'kidney',
'leg_edema',
'liver',
'lunch_amt',
'lunch_food',
'lunch_tod',
'meat',
'meat_product',
'meat_red',
'meat_white',
'milk',
'mod_activity_days',
'mod_activity_hours',
'mod_activity_minutes',
'mother',
'neurologic',
'new_meds',
'occupation',
'on_top',
'oral_contrast',
'osa',
'other_food_intake',
'pancreatitis',
'pastry',
'poultry',
'preg_plans',
'pregnant',
'prior',
'probiotic',
'psychiatric',
'pvd',
'pyo_gangrenosum',
'rash',
'rx',
'salt',
'sccai',
'sccai_total',
'self_assess',
'self_condition',
'shellfish',
'siblings',
'soda',
'starch',
'starch_type',
'stool_blood',
'stool_soft',
'stopped_meds',
'stress',
'stress_def',
'study_disease_description',
'study_disease_disease_ontology_id',
'study_disease_mesh_id',
'study_disease_name',
'study_disease_nci_id',
'study_disease_status',
'study_disease_umls_concept_id',
'subtype',
'sugar',
'sugar_drinks',
'surgery',
'survey_id',
'sweets',
'sweets_count',
'upset',
'urgency_def',
'uveitis',
'veg',
'veg_green',
'veg_raw',
'veg_root',
'vig_activity_days',
'vig_activity_hours',
'vig_activity_minutes',
'walking_days',
'walking_hours',
'walking_minutes',
'water',
'weight',
'weight_change',
'weight_diff',
'work_missed',
'yogurt'
}
# standardizing all values that add no real info to the metadata to simply be NA
# these won't actually be stored in the database, but when metadata for a cart
# is pulled these missing vals will default to NA
meta_null_vals = {
'nan',
'none',
'n/a',
'not applicable',
'unknown/undiagnosed',
'dad',
'mom',
'unknown/not reported',
''
}
# keys that should persist one step down (e.g. need dinner_tod and not just tod for all breakfast/lunch/dinner)
keys_to_keep = {
'walking',
'mod_activity',
'vig_activity',
'study_disease',
'study_disease_status',
'snacks',
'breakfast',
'lunch',
'dinner'
}
# set of IDs from OSDF that were test nodes and are pending removal from OSDF
ignore = {
'88af6472fb03642dd5eaf8cddc37b0f3',
'88af6472fb03642dd5eaf8cddc2f50b1',
'88af6472fb03642dd5eaf8cddc2f07c1',
'88af6472fb03642dd5eaf8cddc712ed7',
'932d8fbc70ae8f856028b3f67cfab1ed',
'b9af32d3ab623bcfbdce2ea3a502c015',
'610a4911a5ca67de12cdc1e4b4014cd0',
'610a4911a5ca67de12cdc1e4b40135fe',
'610a4911a5ca67de12cdc1e4b4014133',
'610a4911a5ca67de12cdc1e4b40156e8',
'610a4911a5ca67de12cdc1e4b40164de',
'610a4911a5ca67de12cdc1e4b4017467',
'610a4911a5ca67de12cdc1e4b4017ab9',
'9bb18fe313e7fe94bf243da07e000de0',
'9bb18fe313e7fe94bf243da07e00107e',
'b9af32d3ab623bcfbdce2ea3a5016b61',
'9bb18fe313e7fe94bf243da07e003ac0',
'419d64483ec86c1fb9a94025f3b94551',
'88af6472fb03642dd5eaf8cddc70c8ec',
'88af6472fb03642dd5eaf8cddc70d1de',
'858ed4564f11795ec13dda4c109b345f',
'67ff3a7b9227c8c6f1db4bbf2226fc4b',
'67ff3a7b9227c8c6f1db4bbf2227079e',
'88af6472fb03642dd5eaf8cddc2f4cb4',
'88af6472fb03642dd5eaf8cddc2f4340',
'194149ed5273e3f94fc60a9ba5001573',
'194149ed5273e3f94fc60a9ba59d2c9f',
'88af6472fb03642dd5eaf8cddc2f5abe',
'9bb18fe313e7fe94bf243da07e0032e4',
'88af6472fb03642dd5eaf8cddc2f3405',
'194149ed5273e3f94fc60a9ba50069b0',
'88af6472fb03642dd5eaf8cddc714325',
'5a950f27980b5d93e4c16da1243b7c05',
'5a950f27980b5d93e4c16da1243b821c',
'52d8c92f2d3660b9add954d544a02d90'
}
node_type_mapping = {
# top-level mapping on node_type
'_key': 'node_type',
'wgs_raw_seq_set': {'data_modality': 'whole metagenome', 'data_type': 'sequence', 'organism_type': 'bacterial'},
'host_wgs_raw_seq_set': {'data_modality': 'whole genome', 'data_type': 'sequence', 'organism_type': 'host'},
'microb_transcriptomics_raw_seq_set': {'data_modality': 'metatranscriptome', 'data_type': 'sequence', 'organism_type': 'bacterial'},
'host_transcriptomics_raw_seq_set': {'data_modality': 'transcriptome', 'data_type': 'sequence', 'organism_type': 'host'},
# TODO - change data_modality to "epigenetics" or "epigenomics"?
'host_epigenetics_raw_seq_set': {'data_modality': 'whole genome', 'data_type': 'sequence', 'organism_type': 'host'},
# TODO - change data_modality to "variation" or "genomic variation"?
'host_variant_call': {'data_modality': 'whole genome', 'data_type': 'sequence', 'organism_type': 'host'},
'16s_raw_seq_set': {'data_modality': 'marker sequence', 'data_type': 'sequence', 'organism_type': 'bacterial'},
'16s_trimmed_seq_set': {'data_modality': 'marker sequence', 'data_type': 'sequence', 'organism_type': 'bacterial'},
'proteome': {'data_modality': 'proteome', 'data_type': 'abundance', 'organism_type': 'host'},
'metaproteome': {'data_modality': 'metaproteome', 'data_type': 'abundance', 'organism_type': 'multi-organism'},
'metabolome': {'data_modality': 'metabolome', 'data_type': 'abundance', 'organism_type': 'host'},
# organism_type = dependent upon parent assay node (either 'host' or 'bacterial')
'lipidome': {'data_modality': 'lipidome', 'data_type': 'abundance', 'organism_type': { '_key': 'parent' }, 'abundance_type': 'lipidome'},
'cytokine': {'data_modality': 'cytokine', 'data_type': 'abundance', 'organism_type': { '_key': 'parent' }, 'abundance_type': 'transcriptome'},
'serology': {'data_modality': 'serology', 'data_type': 'abundance', 'organism_type': { '_key': 'parent' }, 'abundance_type': 'serology'},
# TODO: metametabolome: metabolome - abundance - multi-organism
'abundance_matrix': {
# sub-mapping on matrix_type
'_key': 'matrix_type',
'wgs_functional': {'data_modality': 'whole metagenome', 'data_type': 'abundance', 'organism_type': 'bacterial', 'abundance_type': 'functional'},
'wgs_community': {'data_modality': 'whole metagenome', 'data_type': 'abundance', 'organism_type': 'bacterial', 'abundance_type': 'community'},
'16s_community': {'data_modality': 'marker sequence', 'data_type': 'abundance', 'organism_type': 'bacterial', 'abundance_type': 'community'},
'microb_metatranscriptome': {'data_modality': 'metatranscriptome', 'data_type': 'abundance', 'organism_type': 'bacterial', 'abundance_type': 'transcriptome'},
'microb_metabolome': {'data_modality': 'metabolome', 'data_type': 'abundance', 'organism_type': 'bacterial', 'abundance_type': 'metabolome'},
'microb_proteomic': {'data_modality': 'proteome', 'data_type': 'abundance', 'organism_type': 'bacterial', 'abundance_type': 'proteome'},
'host_transcriptome': {'data_modality': 'transcriptome', 'data_type': 'abundance', 'organism_type': 'host', 'abundance_type': 'transcriptome'},
'host_cytokine': {'data_modality': 'cytokine', 'data_type': 'abundance', 'organism_type': 'host', 'abundance_type': 'transcriptome'},
'host_lipidomic': {'data_modality': 'lipidome', 'data_type': 'abundance', 'organism_type': 'host', 'abundance_type': 'lipidome'}
},
'alignment': {
# sub-mapping on study - don't want to assume the same mapping for non-HMP data
'_key': 'study',
'Human microbiome project WGS production phase I.': {'data_modality': 'whole metagenome', 'data_type': 'alignment', 'organism_type': 'bacterial'}
},
'annotation': {
'_key': 'study',
'Human microbiome project WGS production phase I.':
{
# sub-mapping on subtype
'_key': 'subtype',
# multi-FASTA protein files
'hmgi': {'data_modality': 'metaproteome', 'data_type': 'sequence', 'organism_type': 'bacterial'},
'hmhgi': {'data_modality': 'metaproteome', 'data_type': 'sequence', 'organism_type': 'bacterial'},
'wgs_annotation': {'data_modality': 'metaproteome', 'data_type': 'sequence', 'organism_type': 'bacterial'},
# GFF files
'hmgi2': {'data_modality': 'metatranscriptome', 'data_type': 'sequence', 'organism_type': 'bacterial'},
'hmcgi2': {'data_modality': 'metatranscriptome', 'data_type': 'sequence', 'organism_type': 'bacterial'}
}
},
'clustered_seq_set': {
'_key': 'abbrev',
'HMGC': {'data_modality': 'metaproteome', 'data_type': 'sequence', 'organism_type': 'bacterial'},
'HMGC2': {'data_modality': 'metaproteome', 'data_type': 'sequence', 'organism_type': 'bacterial'}
},
'viral_seq_set': {'data_modality': 'whole metagenome', 'data_type': 'sequence', 'organism_type': 'viral'},
'proteome_nonpride': {'data_modality': 'proteome', 'data_type': 'abundance', 'organism_type': 'host'},
'wgs_assembled_seq_set': {'data_modality': 'whole metagenome', 'data_type': 'sequence', 'organism_type': 'bacterial'}
}