-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathploter.py
219 lines (161 loc) · 8.42 KB
/
ploter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from warzone_scraper import WarzoneScraper
import pandas as pd
import seaborn as sns
import datetime
from matplotlib import pyplot as plt
def prepare_total_kd_frame(df: pd.DataFrame) -> pd.DataFrame:
"""Cleans up the games data into 0.3-1.6 KD interval
for uniform look and counts number of such lobbies"""
group = df.value_counts(subset=['kd'], sort=False).reset_index()
group = group.set_index('kd').reindex([0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4, 1.5, 1.6]).reset_index()
print(group)
return group
def prepare_daily_kd_frame(df: pd.DataFrame) -> pd.DataFrame:
"""Cleans up the data, groups the games by day,
where day has to have atleast 3 games to count,
calculates 3 and 7 day moving average"""
df['day'] = df.timestamp.apply(
lambda x: datetime.datetime.fromtimestamp(x)).astype('datetime64[D]')
new_df = df[['kd', 'day', 'id']]
group = new_df.groupby(by=[new_df.day], as_index=False).agg(
{'kd': 'mean', 'id': 'size'}).rename(columns={'id': 'count'})
# atleast 3 games in a day to use day in the calculations
group.drop(group[group['count'] < 3].index, inplace=True)
group.drop('count', inplace=True, axis=1)
# Moving averages
group['MA3'] = group['kd'].rolling(window=3, min_periods=1).mean()
group['MA7'] = group['kd'].rolling(window=7, min_periods=1).mean()
print(group)
return group
def plot_total_lobby_kd4(
usernames: list[str],
start_game: int, end_game: int, start_hour=0, end_hour=0):
"""Plots 2x2 histograms with avg. match KD of latest games
Plots are saved with descriptive name into the plots/ folder
Arguments:
usernames (list[str]) - 4 battlenet or activision IDs
start_game (int) - Nth last game where the plotting starts
end_game (int) - Nth last game where the plotting ends
start_hour=0 (int) - Sets the start hour to use in the plot (example: filtering only morning games)
end_hour=0 (int) - Sets the end hour to use in the plot (example: filtering only morning games)
if start_hour == end_hour then games at any time are used
"""
assert len(usernames) == 4
fig, ax = plt.subplots(2, 2, figsize=(13, 7), sharex=True, sharey=True)
ax = ax.flatten()
scraper = WarzoneScraper()
for idx, user in enumerate(usernames):
df = scraper.get_data_for_user(user, end_game, start_hour, end_hour)
# filter out the desired game interval
df = df[start_game:end_game]
avg_kd = round(df['kd'].mean(), 3)
df = prepare_total_kd_frame(df)
sns.barplot(ax=ax[idx], x=df.kd, y=df[0], palette='rocket_r')
title = f'{user} - Lobbies from {start_game} to {end_game} latest games'
if start_hour != end_hour:
title += f' between {start_hour}:00 and {end_hour}:59'
title += f' - Avg. KDR : {avg_kd}'
ax[idx].set(title=title, ylabel='Quantity', xlabel='Average lobby KD')
fig.tight_layout()
fig.savefig(
f'plots/total_{usernames[0]}_{usernames[1]}_{usernames[2]}\
_{usernames[3]}_{start_game}-{end_game}_hour_{start_hour}-{end_hour}.png')
plt.show()
def plot_total_lobby_kd(username: str, start_game: int, end_game: int, start_hour=0, end_hour=0):
"""Plots avg. match KD histogram of latest games
Plots are saved with descriptive name into the plots/ folder
Arguments:
username (str) - battlenet or activision name
start_game (int) - Nth last game where the plotting starts
end_game (int) - Nth last game where the plotting ends
start_hour=0 (int) - Sets the start hour to use in the plot (example: filtering only morning games)
end_hour=0 (int) - Sets the end hour to use in the plot (example: filtering only morning games)
if start_hour == end_hour then games at any time are used
"""
scraper = WarzoneScraper()
df = scraper.get_data_for_user(username, end_game, start_hour, end_hour)
# filter out the desired game interval
df = df[start_game:end_game]
avg_kd = round(df['kd'].mean(), 3)
df = prepare_total_kd_frame(df)
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
sns.barplot(ax=ax, x=df.kd, y=df[0], palette='rocket_r')
title = f'{username} - KDR of lobbies from {start_game} to {end_game} latest games'
if start_hour != end_hour:
title += f' between {start_hour}:00 and {end_hour}:59'
title += f' - Avg. KDR : {avg_kd}'
ax.set(title=title, ylabel='Quantity', xlabel='Average lobby KD')
fig.tight_layout()
fig.savefig(
f'plots/total_{username}_{start_game}-{end_game}_hours_{start_hour}-{end_hour}.png')
plt.show()
def plot_daily_lobby_kd(username: str, count: int, start_hour=0, end_hour=0):
"""Plots average KD each day for last `count` matches, missing days are omitted
3 lines are plotted, KD of the day, moving 3-day average, moving 7-day average
Plots are saved with descriptive name into the plots/ folder
Day has to have atleast 3 games in the hour interval to be used in the calculation
Arguments:
username (str) - battlenet or activision name
count (int) - Number of latest games to plot
start_hour=0 (int) - Sets the start hour to use in the plot (example: filtering only morning games)
end_hour=0 (int) - Sets the end hour to use in the plot (example: filtering only morning games)
if start_hour == end_hour then games at any time are used
"""
scraper = WarzoneScraper()
df = scraper.get_data_for_user(username, count, start_hour, end_hour)
count = len(df.index)
avg_kd = round(df['kd'].mean(), 3)
df = prepare_daily_kd_frame(df)
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
df.set_index('day', inplace=True)
sns.lineplot(ax=ax, data=df)
ax.set(title=f'{username} - Daily average lobby KD from {count} games - Avg. KDR : {avg_kd}',
ylabel='Average lobby KD', xlabel='Date')
fig.tight_layout()
fig.savefig(f'plots/daily_{username}_{count}_hours_{start_hour}-{end_hour}.png')
plt.show()
def plot_daily_lobby_kd2(usernames: list, count: int, start_hour=0, end_hour=0):
"""Plots average KD each day for last `count` matches for 2 players, missing days are omitted
Each line represents 7-day moving average of a player
Plots are saved with descriptive name into the plots/ folder
Day has to have atleast 3 games in the hour interval to be used in the calculation
Arguments:
usernames (list[str]) - 2 battlenet or activision IDs
count (int) - Number of latest games to plot
start_hour=0 (int) - Sets the start hour to use in the plot (example: filtering only morning games)
end_hour=0 (int) - Sets the end hour to use in the plot (example: filtering only morning games)
if start_hour == end_hour then games at any time are used
"""
assert len(usernames) == 2
scraper = WarzoneScraper()
df1 = scraper.get_data_for_user(usernames[0], count, start_hour, end_hour)
df1 = prepare_daily_kd_frame(df1)
df1.drop(['kd', 'MA3'], axis=1, inplace=True)
df1['name'] = usernames[0]
df2 = scraper.get_data_for_user(usernames[1], count, start_hour, end_hour)
df2 = prepare_daily_kd_frame(df2)
df2.drop(['kd', 'MA3'], axis=1, inplace=True)
df2['name'] = usernames[1]
df = pd.concat([df1, df2], ignore_index=True, sort=True)
print(df)
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
sns.lineplot(ax=ax, x=df.day, y=df.MA7, hue=df.name)
ax.set(title=f'{usernames} - Daily 7 day moving average of lobby KD from {count} games',
ylabel='Average lobby KD', xlabel='Date')
fig.tight_layout()
fig.savefig(
f'plots/daily_{usernames[0]}_{usernames[1]}_{count}_hour_{start_hour}-{end_hour}.png')
plt.show()
if __name__ == "__main__":
# set the seaborn visual
sns.set_style("darkgrid", {"axes.facecolor": ".9"})
# these are examples, results can be seen in the repository
plot_total_lobby_kd('TheHound#2293', start_game=0, end_game=50, start_hour=14, end_hour=24)
# plot_total_lobby_kd('TheHound#2293', start_game=50, end_game=100)
# plot_total_lobby_kd('TheHound#2293', start_game=0, end_game=300)
# plot_daily_lobby_kd('Achiles#2615', 500, 0, 0)
# plot_daily_lobby_kd2(['bachio99#2426', 'Achiles#2615'], 600, 0, 0)
# plot_total_lobby_kd4(
# usernames=['Farb#2499', 'Tomor36#2712', 'TheHound#2293', 'Achiles#2615'],
# start_game=0, end_game=200)