-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathTaylorAlgo.cpp
270 lines (255 loc) · 9.09 KB
/
TaylorAlgo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#include "TaylorAlgo.h"
#include "Matrix.h"
#include "DELAY_LOC.h"
#include <math.h>
#include <fstream>
#include <iostream>
using namespace std;
void TAYLOR_ALGO::ReadTxt(double tdoa[4])
{
vector<double> inputData;
inputData.resize(4);
//char buffer[100];
//ifstream myfile (filePath);
/*if(!myfile)
{
cout << "Unable to open myfile";
exit(1); // terminate with error
}
while (myfile.getline(buffer, 100))
{
inputData[0] = atof(strtok(buffer," "));
inputData[1] = atof(strtok(NULL," "));
inputData[2] = atof(strtok(NULL," "));
inputData[3] = atof(strtok(NULL," "));
inputTdoaData.push(inputData);
} */
//MS[0] = 2.60;
//MS[1] = 2.33;
for (int row = 0; row < 4; row++)
{
for (int col = 0; col < 3; col++)
{
this->BS[row][col] = ::BS[row][col];
}
}
inputData[0] = tdoa[0];
inputData[1] = tdoa[1];
inputData[2] = tdoa[2];
inputData[3] = tdoa[3];
inputTdoaData.push(inputData);
delay[0] = DELAY[0];
delay[1] = DELAY[1];
delay[2] = DELAY[2];
delay[3] = DELAY[3];
tdoaDataNodelay.resizeMat(inputTdoaData.getRowSize(),inputTdoaData.getColSize());
for(int row = 0;row < inputTdoaData.getRowSize();row++)
{
for(int col = 0;col < inputTdoaData.getColSize();col++)
{
tdoaDataNodelay.setValue(row,col,inputTdoaData.at(row,col) + delay[col]);
}
}
}
void TAYLOR_ALGO::TaylorCalcXY(double x,double y)
{
double meanTdoaData[3] = {0,0,0};
for(int col = 0;col < 3;col++)
{
for(int row = 0;row < tdoaDataNodelay.getRowSize();row++)
{
meanTdoaData[col] += (tdoaDataNodelay.at(row,col+1)-tdoaDataNodelay.at(row,0));
}
meanTdoaData[col] /= tdoaDataNodelay.getRowSize();
}
MAT XQ[3] = {};
for(int row = 0;row < 3;row++)
{
XQ[row].resizeMat(1,tdoaDataNodelay.getRowSize());
for(int col = 0;col < tdoaDataNodelay.getRowSize();col++)
{
XQ[row].setValue(0,col,tdoaDataNodelay.at(col,row+1) - tdoaDataNodelay.at(col,0));
}
}
MAT Q(3,3);
for(int row = 0;row<3;row++)
{
for(int col = 0;col<3;col++)
{
Q.setValue(row,col,((XQ[row]-(meanTdoaData[row]))*((XQ[col]-(meanTdoaData[col])).MyMatTanspose())).at(0,0));
}
}
MAT QReal = Q.MyMatDivide(XQ[0].getColSize());
double delta[2] = {10,10};
double xTaylor = x;
double yTaylor = y;
while(fabs(delta[0])+fabs(delta[1]) > 0.000001)
{
double RTaylor21 = ((tdoaDataNodelay.MyGetCol(1)-tdoaDataNodelay.MyGetCol(0))*0.3).MyMean(COL,0);
double RTaylor31 = ((tdoaDataNodelay.MyGetCol(2)-tdoaDataNodelay.MyGetCol(0))*0.3).MyMean(COL,0);
double RTaylor41 = ((tdoaDataNodelay.MyGetCol(3)-tdoaDataNodelay.MyGetCol(0))*0.3).MyMean(COL,0);
double X1Taylor = BS[0][0];
double Y1Taylor = BS[0][1];
double X2Taylor = BS[1][0];
double Y2Taylor = BS[1][1];
double X3Taylor = BS[2][0];
double Y3Taylor = BS[2][1];
double X4Taylor = BS[3][0];
double Y4Taylor = BS[3][1];
double R1Taylor = sqrt( pow(X1Taylor-xTaylor,2.0)+ pow(Y1Taylor-yTaylor,2.0));
double R2Taylor = sqrt( pow(X2Taylor-xTaylor,2.0)+ pow(Y2Taylor-yTaylor,2.0));
double R3Taylor = sqrt( pow(X3Taylor-xTaylor,2.0)+ pow(Y3Taylor-yTaylor,2.0));
double R4Taylor = sqrt( pow(X4Taylor-xTaylor,2.0)+ pow(Y4Taylor-yTaylor,2.0));
double hTaylorArr[3] = {RTaylor21 - (R2Taylor - R1Taylor),
RTaylor31 - (R3Taylor - R1Taylor),
RTaylor41 - (R4Taylor - R1Taylor)};
MAT hTaylor;
hTaylor.ArrayToMat_Constructor(hTaylorArr,3,1);
double GTaylorArr[] = {
(X1Taylor - xTaylor)/R1Taylor - (X2Taylor - xTaylor)/R2Taylor,(Y1Taylor - yTaylor)/R1Taylor - (Y2Taylor - yTaylor)/R2Taylor,
(X1Taylor - xTaylor)/R1Taylor - (X3Taylor - xTaylor)/R3Taylor,(Y1Taylor - yTaylor)/R1Taylor - (Y3Taylor - yTaylor)/R3Taylor,
(X1Taylor - xTaylor)/R1Taylor - (X4Taylor - xTaylor)/R4Taylor,(Y1Taylor - yTaylor)/R1Taylor - (Y4Taylor - yTaylor)/R4Taylor};
MAT GTaylor;
GTaylor.ArrayToMat_Constructor(GTaylorArr,3,2);
MAT QTaylor = QReal;
double QStub[] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
MAT QStubMat;
QStubMat.ArrayToMat_Constructor(QStub, 3, 3);
QTaylor = QStubMat;
//MAT deltaMat = (GTaylor.MyMatTanspose() *QTaylor.MyInv()*GTaylor).MyInv() *GTaylor.MyMatTanspose() *QTaylor.MyInv() *hTaylor;
MAT debugMat1 = (GTaylor.MyMatTanspose() *QTaylor.MyInv()*GTaylor).MyInv() ;
MAT debugMat2 = debugMat1*GTaylor.MyMatTanspose() ;
MAT debugMat3 = debugMat2 *QTaylor.MyInv();
MAT deltaMat = debugMat3*hTaylor;
delta[0] = deltaMat.at(0,0);
delta[1] = deltaMat.at(1,0);
if( (abs(delta[0]) + abs(delta[1])) > 0.000001)
{
xTaylor = xTaylor + delta[0];
yTaylor = yTaylor + delta[1];
}
}
resultPosition.x = xTaylor;
resultPosition.y = yTaylor;
calcFlag = true;
}
void TAYLOR_ALGO::TaylorCalcXYZ(double x,double y,double z)
{
double meanTdoaData[3] = {0,0,0};
for(int col = 0;col < 3;col++)
{
for(int row = 0;row < tdoaDataNodelay.getRowSize();row++)
{
meanTdoaData[col] += (tdoaDataNodelay.at(row,col+1)-tdoaDataNodelay.at(row,0));
}
meanTdoaData[col] /= tdoaDataNodelay.getRowSize();
}
MAT XQ[3] = {};
for(int row = 0;row < 3;row++)
{
XQ[row].resizeMat(1,tdoaDataNodelay.getRowSize());
for(int col = 0;col < tdoaDataNodelay.getRowSize();col++)
{
XQ[row].setValue(0,col,tdoaDataNodelay.at(col,row+1) - tdoaDataNodelay.at(col,0));
}
}
MAT Q(3,3);
for(int row = 0;row<3;row++)
{
for(int col = 0;col<3;col++)
{
Q.setValue(row,col,((XQ[row]-(meanTdoaData[row]))*((XQ[col]-(meanTdoaData[col])).MyMatTanspose())).at(0,0));
}
}
MAT QReal = Q.MyMatDivide(XQ[0].getColSize());
double QStub[9] = { 1,0,0,0,1,0,0,0,1 };
MAT QStubMat;
QStubMat.ArrayToMat_Constructor(QStub, 3, 3);
QReal = QStubMat;
double delta[3] = {10,10,10};
double xTaylor = x;
double yTaylor = y;
double zTaylor = z;
while(fabs(delta[0])+fabs(delta[1])+fabs(delta[2]) > 0.000001)
{
double RTaylor21 = ((tdoaDataNodelay.MyGetCol(1)-tdoaDataNodelay.MyGetCol(0))*0.3).MyMean(COL,0);
double RTaylor31 = ((tdoaDataNodelay.MyGetCol(2)-tdoaDataNodelay.MyGetCol(0))*0.3).MyMean(COL,0);
double RTaylor41 = ((tdoaDataNodelay.MyGetCol(3)-tdoaDataNodelay.MyGetCol(0))*0.3).MyMean(COL,0);
double X1Taylor = BS[0][0];
double Y1Taylor = BS[0][1];
double Z1Taylor = BS[0][2];
double X2Taylor = BS[1][0];
double Y2Taylor = BS[1][1];
double Z2Taylor = BS[1][2];
double X3Taylor = BS[2][0];
double Y3Taylor = BS[2][1];
double Z3Taylor = BS[2][2];
double X4Taylor = BS[3][0];
double Y4Taylor = BS[3][1];
double Z4Taylor = BS[3][2];
double R1Taylor = sqrt( pow(X1Taylor-xTaylor,2.0)+ pow(Y1Taylor-yTaylor,2.0)+pow(Z1Taylor-zTaylor,2.0) );
double R2Taylor = sqrt( pow(X2Taylor-xTaylor,2.0)+ pow(Y2Taylor-yTaylor,2.0)+pow(Z2Taylor-zTaylor,2.0) );
double R3Taylor = sqrt( pow(X3Taylor-xTaylor,2.0)+ pow(Y3Taylor-yTaylor,2.0)+pow(Z3Taylor-zTaylor,2.0) );
double R4Taylor = sqrt( pow(X4Taylor-xTaylor,2.0)+ pow(Y4Taylor-yTaylor,2.0)+pow(Z4Taylor-zTaylor,2.0) );
double hTaylorArr[3] = {RTaylor21 - (R2Taylor - R1Taylor),
RTaylor31 - (R3Taylor - R1Taylor),
RTaylor41 - (R4Taylor - R1Taylor)};
MAT hTaylor;
hTaylor.ArrayToMat_Constructor(hTaylorArr,3,1);
double GTaylorArr[] = {
(X1Taylor - xTaylor)/R1Taylor - (X2Taylor - xTaylor)/R2Taylor,(Y1Taylor - yTaylor)/R1Taylor - (Y2Taylor - yTaylor)/R2Taylor,(Z1Taylor - zTaylor)/R1Taylor - (Z2Taylor -zTaylor)/R2Taylor,
(X1Taylor - xTaylor)/R1Taylor - (X3Taylor - xTaylor)/R3Taylor,(Y1Taylor - yTaylor)/R1Taylor - (Y3Taylor - yTaylor)/R3Taylor,(Z1Taylor - zTaylor)/R1Taylor - (Z3Taylor -zTaylor)/R3Taylor,
(X1Taylor - xTaylor)/R1Taylor - (X4Taylor - xTaylor)/R4Taylor,(Y1Taylor - yTaylor)/R1Taylor - (Y4Taylor - yTaylor)/R4Taylor,(Z1Taylor - zTaylor)/R1Taylor - (Z4Taylor -zTaylor)/R4Taylor};
MAT GTaylor;
GTaylor.ArrayToMat_Constructor(GTaylorArr,3,3);
MAT QTaylor = QReal;
//MAT deltaMat = (GTaylor.MyMatTanspose() *QTaylor.MyInv()*GTaylor).MyInv() *GTaylor.MyMatTanspose() *QTaylor.MyInv() *hTaylor;
MAT debugMat1 = (GTaylor.MyMatTanspose() *QTaylor.MyInv()*GTaylor).MyInv() ;
MAT debugMat2 = debugMat1*GTaylor.MyMatTanspose() ;
MAT debugMat3 = debugMat2 *QTaylor.MyInv();
MAT deltaMat = debugMat3*hTaylor;
delta[0] = deltaMat.at(0,0);
delta[1] = deltaMat.at(1,0);
delta[2] = deltaMat.at(2,0);
if( (abs(delta[0]) + abs(delta[1]) + abs(delta[2])) > 0.000001)
{
xTaylor = xTaylor + delta[0];
yTaylor = yTaylor + delta[1];
zTaylor = zTaylor + delta[2];
}
}
resultPosition.x = xTaylor;
resultPosition.y = yTaylor;
resultPosition.z = zTaylor;
calcFlag = true;
}
bool TAYLOR_ALGO::GetCalcResult(double *desX,double *desY)
{
if(calcFlag == false)
{
cout<<"calc fail or you didn't calc!"<<endl;
return false;
}
*desX = resultPosition.x;
*desY = resultPosition.y;
return true;
}
bool TAYLOR_ALGO::GetCalcResult(double *desX,double *desY,double *desZ)
{
if(calcFlag == false)
{
cout<<"calc fail or you didn't calc!"<<endl;
return false;
}
*desX = resultPosition.x;
*desY = resultPosition.y;
*desZ = resultPosition.z;
return true;
}
TAYLOR_ALGO::TAYLOR_ALGO()
{
calcFlag = false;
}
TAYLOR_ALGO::~TAYLOR_ALGO()
{
}