Skip to content

Latest commit

 

History

History
57 lines (52 loc) · 1.24 KB

README.md

File metadata and controls

57 lines (52 loc) · 1.24 KB

Re2Com

Requirements

  • Python 3.7
  • TensorFlow 1.15
  • CUDA 10.1
  • NLTK 3.4.5
  • Java 1.8.0

Train and Test

Our code is based on

    tar xvf funcom.tar.gz
  • Process the dataset and generate the vocabulary
    ./data-process.py
  • Build the Retrieval corpus
    cd retrieve
    ./compile.sh
    ./buildIndex.sh
  • Generate exemplars for training and testing
    cd retrieve
    ./buildExemplars.sh
  • Train Re2Com model for standard dataset
    cd standard
    python __main__.py re2com.yaml --train -v
  • Train Re2Com model for challenge dataset
    cd challenge
    python __main__.py challenge.yaml --train -v
  • Retrieve code with standard dataset as corpus
    • Note that the output file will only contain numbers, which are the line numbers of the retrieved code.
    cd retrieve
    ./search.sh standard-corpus ${input-file} ${output-file}

Evaluation

The evaluation results are located at standard/models/eval/ or challenge/models/eval/. Evaluation code is based on https://github.com/tylin/coco-caption

    cd evaluation
    python2 evaluate.py