-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmodels.py
936 lines (810 loc) · 36.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
from functools import partial
import math
from typing import Union, Dict
import os
import pytorch_lightning as pl
from e3nn import o3
from e3nn.math import soft_unit_step
from e3nn.util.jit import compile_mode
import torch
from torch.nn import functional as F
from torch import nn
from einops import rearrange
from cg import NUM_CG_TYPES
from utils_data import NUM_EDGE_TYPE, MAX_DIST
from utils import (compute_X_uv, compute_X_uv_pred, compute_X_v_pred,
compute_FAPE_uv, quaternion_slerp, compute_d_ijab,
compute_d_ijab_pred, compute_x_pdb, compute_struct_loss,
R_from_quaternion_u, compose_rotations)
def compute_init_struct(init_scheme, resnum, dtype):
device = resnum.device
N_cg = len(resnum)
T_size = (N_cg, 3)
if init_scheme == "blackhole":
R_pred = torch.eye(3, device=device, dtype=dtype).repeat((N_cg, 1, 1))
T_pred = torch.zeros(T_size, device=device, dtype=dtype)
elif init_scheme == "random":
R_pred = o3.rand_matrix(N_cg, device=device, dtype=dtype)
T_init_sig = 1.0
T_pred = T_init_sig * torch.randn(T_size, device=device, dtype=dtype)
else:
raise NotImplementedError
return R_pred, T_pred
def compute_weight_cutoff(edge_length, rc):
return soft_unit_step(10 * (1 - edge_length.unsqueeze(-1) / rc))
@compile_mode('script')
class MLP(torch.nn.Module):
def __init__(self, num_neurons, activation, apply_layer_norm=False):
super(MLP, self).__init__()
self.activation = activation
self.layers = torch.nn.ModuleList()
self.apply_layer_norm = apply_layer_norm
if apply_layer_norm:
self.layer_norms = torch.nn.ModuleList()
idx = 0
for nin, nout in zip(num_neurons[:-1], num_neurons[1:]):
self.layers.append(torch.nn.Linear(nin, nout, bias=True))
if self.apply_layer_norm:
if idx < len(num_neurons) - 1:
self.layer_norms.append(torch.nn.LayerNorm(nout))
idx += 1
def forward(self, x):
for i, layer in enumerate(self.layers[:-1]):
x = self.activation(layer(x))
if self.apply_layer_norm:
x = layer_norm[i](x)
x = self.layers[-1](x)
return x
@compile_mode('script')
class BesselBasis(torch.nn.Module):
"""This would be more aptly called sinusoidal radial basis given the implementation
"""
def __init__(
self,
rc,
radial_num_basis=16
) -> None:
super().__init__()
self.rc = rc
self.radial_num_basis = radial_num_basis
self.prefactor = 2.0 / self.rc
bessel_weights = (
torch.linspace(start=1.0, end=self.radial_num_basis, steps=self.radial_num_basis) * math.pi
)
self.bessel_weights = torch.nn.Parameter(bessel_weights)
def forward(self, x):
return self.prefactor * torch.sin(self.bessel_weights[None, None, :] * x[:, :, None] / self.rc) # / x.unsqueeze(-1)
@compile_mode('script')
class RadialNN(torch.nn.Module):
def __init__(
self,
num_out_features,
rc,
radial_num_basis=16,
radial_num_hidden=16,
radial_num_layers=2,
include_edge_features=False,
num_edge_features=None
) -> None:
super().__init__()
self.num_out_features = num_out_features
self.rc = rc
self.radial_num_basis = radial_num_basis
self.radial_num_hidden = radial_num_hidden
self.radial_num_layers = radial_num_layers
self.include_edge_features = include_edge_features
self.num_edge_features = num_edge_features
if self.include_edge_features:
assert type(num_edge_features) is int
# ---- MLP
self.mlp = MLP([self.radial_num_basis + self.num_edge_features if self.include_edge_features else self.radial_num_basis] + \
[self.radial_num_hidden] * self.radial_num_layers + \
[self.num_out_features],
F.silu)
# ---- bassel basis
self.bessels = BesselBasis(self.rc, self.radial_num_basis)
def forward(self, r_ij, edges_ij, weight_cutoff=None):
# compute basis
inputs = self.bessels(r_ij)
if weight_cutoff is not None:
inputs = inputs * weight_cutoff
# combine edge features
if self.include_edge_features:
inputs = torch.cat([inputs, edges_ij], dim=-1)
weight = self.mlp(inputs)
return weight
@compile_mode('script')
class LayerNorm(torch.nn.Module):
def __init__(self, irreps):
super().__init__()
"""implement layernorm in the equiformer"""
self.irreps = irreps
self.gamma_s = torch.nn.Parameter(torch.ones(self.irreps[0]))
self.beta_s = torch.nn.Parameter(torch.zeros(self.irreps[0]))
self.gamma_v = torch.nn.Parameter(torch.ones(self.irreps[1]))
def forward(self, s, v):
# -- scalar
x = s
# subtact mean
mu = x.mean(dim=1, keepdim=True)
x = x - mu
# normalize and rms
square_norm_x = x.square()
rms = (square_norm_x.mean(dim=1) + 1e-6).sqrt() # [N]
# apply params
s = self.gamma_s[None, :] * x / rms[:, None] + self.beta_s[None, :]
# -- vector
x = v
# normalize and rms
square_norm_x = x.square()
rms = (square_norm_x.sum(dim=[1, 2]) / self.irreps[1] + 1e-6).sqrt() # [N]
# apply params
v = self.gamma_v[None, :, None] * x / rms[:, None, None]
return s, v
@compile_mode('script')
class Emb(torch.nn.Module):
def __init__(
self,
num_node_types,
nc
) -> None:
super().__init__()
# input node embedding
self.nc = nc
self.d_s = nc
self.d_v = 3 * nc
self.num_node_types = num_node_types
self.embed_s = torch.nn.Embedding(num_node_types, self.d_s, padding_idx=-1, max_norm=1, norm_type=2.0,
scale_grad_by_freq=False, sparse=False)
self.embed_v = torch.nn.Embedding(num_node_types, self.d_v, padding_idx=-1, max_norm=1, norm_type=2.0,
scale_grad_by_freq=False, sparse=False)
def forward(self, nodes, R):
s = self.embed_s(nodes)
v = self.embed_v(nodes).reshape(len(nodes), self.nc, 3) # [N_CG, nc, 3]
return s, rotate_embedding(v, R)
def rotate_embedding(v, R):
return torch.einsum("rij,rkj->rki", R, v)
@compile_mode('script')
class Linear(torch.nn.Module):
def __init__(
self,
nc_s_in,
nc_s_out,
nc_v_in,
nc_v_out,
add_bias=False
) -> None:
super().__init__()
self.nc_s_in=nc_s_in
self.nc_s_out=nc_s_out
self.nc_v_in=nc_v_in
self.nc_v_out=nc_v_out
assert (nc_v_out > 0) or (nc_s_out > 0)
if nc_s_out > 0:
w_s = torch.empty((nc_s_out, nc_s_in))
nn.init.xavier_uniform_(w_s, gain=1)
self.w_s = torch.nn.Parameter(w_s)
self.add_bias = add_bias
if self.add_bias:
self.b_s = torch.nn.Parameter(torch.zeros(nc_s_out))
if nc_v_out > 0:
w_v = torch.empty((nc_v_out, nc_v_in))
nn.init.xavier_uniform_(w_v, gain=1)
self.w_v = torch.nn.Parameter(w_v)
def forward(self, s, v):
if self.nc_s_out > 0:
s = torch.einsum("ij,...j->...i", self.w_s, s)
if self.add_bias:
if len(s.size()) == 2:
s = s + self.b_s[None, :]
elif len(s.size()) == 3:
s = s + self.b_s[None, None, :]
else:
raise NotImplementedError
else:
s = None
v = torch.einsum("ij,...jk->...ik", self.w_v, v) if self.nc_v_out > 0 else None
return s, v
class NN(pl.LightningModule):
def __init__(self,
lr=1e-5,
wd=1e-8,
slerp_warmup=True,
lr_warmup=False,
lr_anneal=False,
lr_anneal_final_step=200000,
# number of channels
nc=32,
# interaction type
interaction_type="attn-direct",
attn_num_heads=1,
# interaction module params
distinct_blocks=False,
distinct_embeddings=False,
num_blocks=4,
num_layers=3,
rc=100., # cutoff
d_edge=32,
radial_num_basis=32,
radial_num_hidden=32,
# for CG initialization during training
warmup_steps=1,
init_scheme="blackhole",
apply_layer_norm=False,
attend_to_self=False,
disable_cutoff=False,
accumulate_grad_batches=1,
gradient_clip_val=5.0,
fape_clip_val=10.,
weight_struct_loss=1.0,
weight_struct_loss_scale="constant"
):
super().__init__()
self.save_hyperparameters()
self.automatic_optimization = False
self.lr=lr
self.lr_anneal=lr_anneal
self.lr_anneal_final_step=lr_anneal_final_step
self.slerp_warmup=slerp_warmup
self.lr_warmup=lr_warmup
self.wd=wd
self.nc=nc
self.num_blocks=num_blocks
self.num_layers=num_layers
self.rc=rc
self.attn_num_heads=attn_num_heads
self.interaction_type=interaction_type
self.d_edge=d_edge
self.radial_num_basis=radial_num_basis
self.radial_num_hidden=radial_num_hidden
self.warmup_steps=warmup_steps
self.init_scheme=init_scheme
self.distinct_blocks=distinct_blocks
self.distinct_embeddings=distinct_embeddings
self.apply_layer_norm=apply_layer_norm
self.disable_cutoff=disable_cutoff
self.accumulate_grad_batches=accumulate_grad_batches
self.gradient_clip_val=gradient_clip_val
self.fape_clip_val=fape_clip_val
self.weight_struct_loss=weight_struct_loss
self.weight_struct_loss_scale=weight_struct_loss_scale
if self.distinct_embeddings:
self.embs = torch.nn.ModuleList([Emb(NUM_CG_TYPES+1, self.nc) for _ in range(self.num_blocks)])
else:
self.emb = Emb(NUM_CG_TYPES+1, self.nc)
self.attend_to_self=attend_to_self
if distinct_blocks:
self.enns = torch.nn.ModuleList([self.make_block() for _ in range(self.num_blocks)])
else:
self.enn = self.make_block()
def make_block(self):
block = E3NN(nc=self.nc,
num_layers=self.num_layers,
rc=self.rc,
nonlinearity="gated",
include_edge_features=True,
d_embed_edge=self.d_edge,
num_edge_types=NUM_EDGE_TYPE,
radial_num_basis=self.radial_num_basis,
radial_num_hidden=self.radial_num_hidden,
radial_num_layers=2,
interaction_type=self.interaction_type,
attn_num_heads=self.attn_num_heads,
apply_layer_norm=self.apply_layer_norm,
attend_to_self=self.attend_to_self,
disable_cutoff=self.disable_cutoff)
return block
def forward(self, batch, compute_loss=False, return_struct=False, is_train=False,
set_RT_to_ground_truth=False, skip_first=False):
return_dict = {"losses_fape": [[] for _ in range(self.num_blocks + 1)], # eventually, list of floats; averaged over block; list comprehension necessary
"losses_bond": [[] for _ in range(self.num_blocks + 1)],
"losses_angle": [[] for _ in range(self.num_blocks + 1)],
"losses_clash": [[] for _ in range(self.num_blocks + 1)],
"R_pred": [], # list of lists
"T_pred": [], # list of lists
"X_pred": [], # list of lists
"x_pred": [], # list of lists; pdb
"loss_total": 0} # scalar
N = len(batch)
for b, data in enumerate(batch):
# ---- initialize predicted R,T
X0 = data["cg_X0"] # initial coordinates
resnum = data["cg_resnum"]
dtype = X0.dtype
R_pred, T_pred = compute_init_struct(self.init_scheme, resnum, dtype)
if compute_loss:
# ---- ground truth for FAPE loss
mask = data["cg_mask"]
# truth
R = data["cg_R"]
T = data["cg_T"]
X = data["cg_X"]
mask_atom = data["cg_atom_mask"]
mask_amb = data["cg_amb"]
# alt truth
R_alt = data["cg_R_alt"]
T_alt = data["cg_T_alt"]
X_alt = data["cg_X_alt"]
mask_atom_alt = data["cg_atom_mask_alt"]
mask_amb_alt = data["cg_amb_alt"]
# used for resolving ambiguity due to symmetry
d_ijab, mask_ijab = compute_d_ijab(X, mask_atom, mask_amb)
d_ijab_alt, mask_ijab_alt = compute_d_ijab(X_alt, mask_atom_alt, mask_amb_alt)
# ---- attempt to help with initial training
tau = min(1., self.trainer.global_step / self.warmup_steps) if is_train else 1.0
if is_train and not set_RT_to_ground_truth:
# tau: 0 to 1 --> ground truth (minus centroid) to initial scheme
# for masked nodes, apply the initial scheme
if self.slerp_warmup:
if tau < 1.0:
unmasked = mask == 1.
T_pred[unmasked] = tau * T_pred[unmasked] + (1 - tau) * T[unmasked]
R_pred[unmasked] = quaternion_slerp(R[unmasked], R_pred[unmasked], tau)
if set_RT_to_ground_truth:
R_pred = R
T_pred = T
# ---- embed the nodes and steer
# residue distance with max
# [N_cg, N_cg]; i is the dest/query for attention
with torch.no_grad():
edge_type_ij = torch.clamp(resnum[None, :] - resnum[:, None],
min=-MAX_DIST, max=MAX_DIST) + MAX_DIST
edge_type_ij[edge_type_ij == (2 * MAX_DIST)] = 0 # treat min / max dist as equal "far away"
# ---- iteratively update structure
if return_struct:
return_dict["R_pred"].append([])
return_dict["T_pred"].append([])
return_dict["X_pred"].append([])
return_dict["x_pred"].append([])
for i in range(self.num_blocks+1):
if i == 0 and skip_first:
# to avoid unnecessary comp during training
continue
# 0-th step is to store initial structure
if i > 0:
# this has to be here since otherwise gradients won't be accumulated
if self.distinct_embeddings:
emb = self.embs[i-1]
else:
emb = self.emb
s, v = emb(data["cg_cgidx"], R_pred)
if self.distinct_blocks:
block = self.enns[i-1]
else:
block = self.enn
# predict updates
R_pred, T_pred = block(s, v, R_pred, T_pred, edge_type_ij)
# compute current structure
if return_struct or compute_loss:
X_v_pred = compute_X_v_pred(X0, R_pred, T_pred)
x_pred = compute_x_pdb(X_v_pred, data["scatter_index"], data["scatter_w"], len(data["dst_resnum"]))
if return_struct:
return_dict["R_pred"][b].append(R_pred.detach())
return_dict["T_pred"][b].append(T_pred.detach())
return_dict["X_pred"][b].append(X_v_pred.detach())
return_dict["x_pred"][b].append(x_pred.detach())
if compute_loss:
d_ijab_pred = compute_d_ijab_pred(X_v_pred)
X_uv, mask_atom_uv = compute_X_uv(mask, X, R, T, mask_atom,
X_alt, R_alt, T_alt, mask_atom_alt,
d_ijab, mask_ijab,
d_ijab_alt, mask_ijab_alt,
d_ijab_pred)
X_uv_pred = compute_X_uv_pred(X_v_pred, R_pred, T_pred)
loss = compute_FAPE_uv(X_uv, mask_atom_uv, X_uv_pred, eps=1e-4, d_max=self.fape_clip_val)
return_dict["losses_fape"][i].append(loss.detach())
# does take that long
loss_bond, loss_angle, loss_clash = compute_struct_loss(x_pred, data)
return_dict["losses_bond"][i].append(loss_bond.detach())
return_dict["losses_angle"][i].append(loss_angle.detach())
return_dict["losses_clash"][i].append(loss_clash.detach())
loss_struct = loss_bond + loss_angle + loss_clash
if self.weight_struct_loss > 0.:
if self.weight_struct_loss_scale == "constant":
scale = 1.
elif self.weight_struct_loss_scale == "linear":
scale = i / self.num_blocks
elif self.weight_struct_loss_scale == "quadratic":
scale = (i / self.num_blocks)**2
else:
raise ValueError
loss = loss + tau * self.weight_struct_loss * loss_struct * scale
if i > 0:
if is_train:
loss_for_grad = loss / self.accumulate_grad_batches / N # normalization added # grad acc does appear here correctly
if not self.distinct_blocks:
assert not self.distinct_embeddings
loss_for_grad = loss_for_grad / self.num_blocks
# https://github.com/Lightning-AI/lightning/discussions/10792#discussioncomment-1712526
# only sync after last block of last sample?
if i == self.num_blocks and b == (N - 1):
self.manual_backward(loss_for_grad)
else:
with self.trainer.model.no_sync():
self.manual_backward(loss_for_grad)
return_dict["loss_total"] = return_dict["loss_total"] + loss.detach()
# detach after loss calculation
R_pred = R_pred.detach()
T_pred = T_pred.detach()
# final averages
if compute_loss:
for c in ["fape", "angle", "bond", "clash"]:
return_dict[f"losses_{c}"] = [sum(x) / N for x in return_dict[f"losses_{c}"]] # grad acc does not appear here correctly
return_dict["loss_total"] = return_dict["loss_total"] / N / self.num_blocks # mean over blocks
return return_dict
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.wd)
return optimizer
def training_step(self, train_batch, batch_idx):
opt = self.optimizers()
return_dict = self(train_batch, compute_loss=True, return_struct=False, is_train=True,
skip_first=True)
if (batch_idx + 1) % self.accumulate_grad_batches == 0:
torch.nn.utils.clip_grad_norm_(self.parameters(), self.gradient_clip_val)
opt.step()
opt.zero_grad()
if self.lr_warmup or self.lr_anneal:
if self.trainer.global_step < self.warmup_steps:
lr_scale = min(1., float(self.trainer.global_step + 1) / self.warmup_steps)
elif self.lr_anneal and self.trainer.global_step >= self.warmup_steps: # anneal
step_after_warmup = self.trainer.global_step - self.warmup_steps
if step_after_warmup < self.lr_anneal_final_step:
arg = (math.pi / 2.) * (step_after_warmup / self.lr_anneal_final_step)
lr_scale = 0.9 * math.cos(arg) + 0.1
else:
lr_scale = 0.1
else: # only after warm up and if no aneal
lr_scale = 1.
for pg in opt.param_groups:
pg['lr'] = lr_scale * self.lr
self.log('train_loss', return_dict["loss_total"], batch_size=len(train_batch), sync_dist=True)
for c in ["fape", "angle", "bond", "clash"]:
self.log(f'train_loss_{c}_final', return_dict[f"losses_{c}"][-1], batch_size=len(train_batch), sync_dist=True)
return return_dict["loss_total"]
def validation_step(self, val_batch, batch_idx):
return_dict = self(val_batch, compute_loss=True, return_struct=False, is_train=False)
self.log('val_loss', return_dict["loss_total"], batch_size=len(val_batch), sync_dist=True)
for c in ["fape", "angle", "bond", "clash"]:
self.log(f'val_loss_{c}_final', return_dict[f"losses_{c}"][-1], batch_size=len(val_batch), sync_dist=True)
return return_dict["loss_total"]
def test_step(self, test_batch, batch_idx):
return_dict = self(test_batch, compute_loss=True, return_struct=False, is_train=False)
self.log('test_loss', return_dict["loss_total"], batch_size=len(test_batch), sync_dist=True)
for c in ["fape", "angle", "bond", "clash"]:
self.log(f'test_loss_{c}_final', return_dict[f"losses_{c}"][-1], batch_size=len(test_batch), sync_dist=True)
@compile_mode('script')
class DTPByHead(torch.nn.Module):
def __init__(
self,
nc_s_in, nc_v_in,
nc_s_out, nc_v_out,
num_heads) -> None:
"""
depth-wise tensor product with SHs
performs
- DTP w/ provided weights or internal (uvu)
- apply linear w/ bias
"""
super().__init__()
assert nc_s_in == nc_v_in
self.nc_s_in = nc_s_in
self.nc_v_in = nc_v_in
self.num_heads = num_heads
self.dim_post_dtp = 2 * nc_s_in
self.weight_numel = 4 * nc_s_in * num_heads
# determine tp out shapes
self.nc_s_out = nc_s_out
self.nc_v_out = nc_v_out
# weights for linear
# scalar
w_s = torch.empty((num_heads, nc_s_out, self.dim_post_dtp))
nn.init.xavier_uniform_(w_s, gain=1)
self.w_s = torch.nn.Parameter(w_s)
self.b_s = torch.nn.Parameter(torch.zeros((num_heads, nc_s_out)))
# vector
w_v = torch.empty((num_heads, nc_v_out, self.dim_post_dtp))
nn.init.xavier_uniform_(w_v, gain=1)
self.w_v = torch.nn.Parameter(w_v)
def forward(self, s, v, r_ij_vec, weights):
"""reshaping is done at the input"""
w_ss, w_sv, w_vs, w_vv = rearrange(weights, 'i j (c h m) -> c h i j m', c=4, h=self.num_heads)
# tp
ss = w_ss * s
sv = w_sv.unsqueeze(-1) * s.unsqueeze(-1) * r_ij_vec.unsqueeze(-2)
vs = w_vs.unsqueeze(-1) * v
vv = w_vv * (v * r_ij_vec.unsqueeze(-2)).sum(-1)
s = rearrange([ss, vv], 'c h i j m -> h i j (c m)')
v = rearrange([sv, vs], 'c h i j m k -> h i j (c m) k')
# apply linear
s = torch.einsum("h m n, h i j n -> h i j m", self.w_s, s) + self.b_s[:, None, None, :]
v = torch.einsum("h m n, h i j n k -> h i j m k", self.w_v, v)
return s, v
@compile_mode('script')
class Equiformer(torch.nn.Module):
"""Implements Fig.1b of Equiformer, with several modifications"""
def __init__(
self,
irreps_in, # (nc scalar, nc vector)
irreps_out, # (nc scalar, nc vector)
rc,
radial_num_basis=16,
radial_num_hidden=16,
radial_num_layers=2,
include_edge_features=False,
num_edge_features=None,
num_heads=1,
apply_layer_norm=True, # for both attn and ff
apply_resnet=True, # only concerns ff block
apply_nonlinear=False, # this is a dummy param; no effect
ff_mul=3,
attend_to_self=False,
interaction_type="attn-direct"
) -> None:
super().__init__()
self.irreps_in = irreps_in
self.irreps_out = irreps_out
self.rc = rc
self.radial_num_basis = radial_num_basis
self.radial_num_hidden = radial_num_hidden
self.radial_num_layers = radial_num_layers
self.include_edge_features = include_edge_features
self.num_edge_features = num_edge_features
self.num_heads = num_heads
self.apply_layer_norm = apply_layer_norm
if apply_layer_norm:
self.layer_norm_attn = LayerNorm(self.irreps_in)
self.layer_norm_ff = LayerNorm(self.irreps_in)
self.apply_resnet = apply_resnet
self.interaction_type = interaction_type
self.nc_s_in = nc_s_in = self.irreps_in[0]
self.nc_v_in = nc_v_in = self.irreps_in[1]
# ---- initial mixing
self.linear_src = Linear(nc_s_in, nc_s_in, nc_v_in, nc_v_in, add_bias=True)
self.linear_dst = Linear(nc_s_in, nc_s_in, nc_v_in, nc_v_in, add_bias=True)
assert nc_v_in == nc_s_in
# -- linear after tp
self.nc_by_head = nc_s_in // num_heads # ex: 8 = 32 / 4
nc_middle = self.nc_by_head # ex: 8
nc_s_in_by_head = nc_v_in_by_head = 2 * self.nc_by_head
# scalar
w_s = torch.empty((num_heads, nc_middle, nc_s_in_by_head))
nn.init.xavier_uniform_(w_s, gain=1)
self.w_s_init = torch.nn.Parameter(w_s)
self.b_s_init = torch.nn.Parameter(torch.zeros((num_heads, nc_middle)))
# vector
w_v = torch.empty((num_heads, nc_middle, nc_s_in_by_head))
nn.init.xavier_uniform_(w_v, gain=1)
self.w_v_init = torch.nn.Parameter(w_v)
# ---- pre-attn dtp with sh
nc_s_out_by_head = 3 * self.nc_by_head
nc_v_out_by_head = self.nc_by_head
self.pre_attn_dtp_linear = DTPByHead(nc_middle,
nc_middle,
nc_s_out_by_head,
nc_v_out_by_head,
num_heads)
self.radialnn = RadialNN(self.pre_attn_dtp_linear.weight_numel,
self.rc,
self.radial_num_basis,
self.radial_num_hidden,
self.radial_num_layers,
self.include_edge_features,
self.num_edge_features)
# ---- attn linear
w_s = torch.empty((num_heads, self.nc_by_head, 2 * self.nc_by_head))
nn.init.xavier_uniform_(w_s, gain=1)
self.attn_msg_w_s = torch.nn.Parameter(w_s)
self.attn_msg_b_s = torch.nn.Parameter(torch.zeros((num_heads, self.nc_by_head)))
# vector
w_v = torch.empty((num_heads, self.nc_by_head, 2 * self.nc_by_head))
nn.init.xavier_uniform_(w_v, gain=1)
self.attn_msg_w_v = torch.nn.Parameter(w_v)
# ---- attn weight
self.attend_to_self = attend_to_self
self.attn_weight_relu = torch.nn.LeakyReLU(0.1)
w = torch.empty((num_heads, self.nc_by_head))
nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('leaky_relu', 0.1))
self.attn_w = torch.nn.Parameter(w)
# ---- attn final linear
self.linear_attn_final = Linear(nc_s_in, nc_s_in, nc_v_in, nc_v_in, add_bias=True)
# ---- feed-forward
# ff1 -> gate -> ff2
self.ff_mul = ff_mul
self.nc_s_out = nc_s_out = self.irreps_out[0]
self.nc_v_out = nc_v_out = self.irreps_out[1]
assert nc_v_out > 0, "assume there will always be at least one vector output"
# -- comput v norms: (nc_s, nc_v) -> (nc_s + nc_v, nc_v)
# -- ff1: (nc_s + nc_v, nc_v) -> (m * nc_s out + m * nc_v out, m * nc_v out)
self.ff1 = Linear(nc_s_in, # + nc_v_in,
ff_mul * nc_s_out + ff_mul * nc_v_out,
nc_v_in,
ff_mul * nc_v_out,
add_bias=True)
# -- gate: (m * nc_s out + m * nc_v out, m * nc_v out) -> (m * nc_s out, m * nc_v out)
# -- ff2: (m * nc_s out, m * nc_v out) -> (nc_s out, nc_v out)
self.ff2 = Linear(ff_mul * nc_s_out, nc_s_out, ff_mul * nc_v_out, nc_v_out,
add_bias=True)
def forward(self, s, v, edges_ij, r_ij, r_ij_vec, weight_cutoff=None):
"""
args:
edges [N, N]: precomputed residue num diff embedding
r_ij [N, N]
r_ij_vec [N, N, 3]
"""
# ---- attn module
s0, v0 = s, v # for skip
if self.apply_layer_norm:
s, v = self.layer_norm_attn(s, v)
# ---- initial mixing
# i is the dst/query, which gets first dim
s_i, v_i = self.linear_dst(s, v)
s_j, v_j = self.linear_src(s, v)
s_i = rearrange(s_i, "i (h m) -> h i () m", h=self.num_heads)
v_i = rearrange(v_i, "i (h m) k -> h i () m k", h=self.num_heads)
s_j = rearrange(s_j, "j (h m) -> h () j m", h=self.num_heads)
v_j = rearrange(v_j, "j (h m) k -> h () j m k", h=self.num_heads)
# channel wise tp
ss = s_i * s_j
sv = s_i.unsqueeze(-1) * v_j
vs = v_i * s_j.unsqueeze(-1)
vv = (v_i * v_j).sum(-1)
# concat
s_ij = torch.cat([ss, vv], dim=-1)
v_ij = torch.cat([sv, vs], dim=-2)
# post tp linear
s_ij = torch.einsum("h m n, h i j n -> h i j m", self.w_s_init, s_ij) + self.b_s_init[:, None, None, :]
v_ij = torch.einsum("h m n, h i j n k -> h i j m k", self.w_v_init, v_ij)
# ---- pre attn dtp with sh
weights = self.radialnn(r_ij, edges_ij, weight_cutoff)
s_ij, v_ij = self.pre_attn_dtp_linear(s_ij, v_ij, r_ij_vec, weights)
# split (grouped by head)
s_ij0, gate_v, s_ij = rearrange(s_ij, 'h i j (c m) -> c h i j m', c=3)
# -- compute messages
# gate
s_ij = F.silu(s_ij)
v_ij = torch.sigmoid(gate_v).unsqueeze(-1) * v_ij
# tp; r_ij_vec (i j k)
ss = s_ij
sv = s_ij.unsqueeze(-1) * r_ij_vec[None, :, :, None, :]
vs = v_ij
vv = torch.einsum('h i j m k, i j k -> h i j m', [v_ij, r_ij_vec])
s = rearrange([ss, vv], 'c h i j m -> h i j (c m)')
v = rearrange([sv, vs], 'c h i j m k -> h i j (c m) k')
# apply linear
s_ij = torch.einsum("h m n, h i j n -> h i j m", self.attn_msg_w_s, s) + self.attn_msg_b_s[:, None, None, :]
v_ij = torch.einsum("h m n, h i j n k -> h i j m k", self.attn_msg_w_v, v)
# -- compute attn score
z_ij = torch.einsum("h n, h i j n -> h i j", self.attn_w, s_ij0)
if not self.attend_to_self:
nn = z_ij.size()[1]
z_ij = z_ij - 1e9 * torch.eye(nn, device=z_ij.device).unsqueeze(0)
a_ij = F.softmax(z_ij, dim=-1) # over dst
# -- combine
s = torch.einsum('h i j, h i j m -> h i m', [a_ij, s_ij])
s = rearrange(s, 'h i m -> i (h m)')
v = torch.einsum('h i j, h i j m k -> h i m k', [a_ij, v_ij])
v = rearrange(v, 'h i m k -> i (h m) k')
s, v = self.linear_attn_final(s, v)
# skip
s = s0 + s
v = v0 + v
# ---- ff module
if self.apply_resnet:
s0, v0 = s, v # for skip
if self.apply_layer_norm:
s, v = self.layer_norm_ff(s, v)
# -- norm
# todo: eliminate this?
# v_norm = (nodes["v"].square().sum(-1) + 1e-6).sqrt() # [N, nc_v]
# -- ff1
# s = torch.cat([s, v_norm], dim=1)
s, v = self.ff1(s, v)
# -- gate
if self.nc_s_out > 0:
offset = self.ff_mul * self.nc_s_out # for scalar
gate_v = s[:, offset:]
s = F.silu(s[:, :offset])
else:
gate_v = s
s = None
v = torch.sigmoid(gate_v).unsqueeze(-1) * v
# -- ff2
s, v = self.ff2(s, v)
if self.apply_resnet:
s = s0 + s
v = v0 + v
return s, v
@compile_mode('script')
class E3NN(torch.nn.Module):
def __init__(
self,
nc=None,
num_layers=None,
rc=None,
nonlinearity=None,
include_edge_features=None,
d_embed_edge=None,
num_edge_types=None,
radial_num_basis=None,
radial_num_hidden=None,
radial_num_layers=None,
interaction_type=None,
attn_num_heads=None,
attend_to_self=False,
apply_layer_norm=False,
disable_cutoff=False
) -> None:
super().__init__()
self.nc = nc
self.irreps = (nc, nc)
self.disable_cutoff = disable_cutoff
# ---- edge embedding
self.d_embed_edge = d_embed_edge
self.num_edge_types = num_edge_types
self.include_edge_features = include_edge_features
self.embed_edge = torch.nn.Embedding(num_edge_types, self.d_embed_edge, padding_idx=-1, max_norm=1, norm_type=2.0,
scale_grad_by_freq=False, sparse=False)
# ---- spherical
self.num_layers = num_layers
assert num_layers >= 1
# ---- radial components
self.radial_num_basis = radial_num_basis
self.radial_num_hidden = radial_num_hidden
self.radial_num_layers = radial_num_layers
# ---- interaction block
self.interaction_type=interaction_type
self.apply_layer_norm=apply_layer_norm
self.attend_to_self=attend_to_self
self.attn_num_heads=attn_num_heads
self.rc = rc
assert interaction_type in ["attn-direct"]
UpdateModule = partial(Equiformer,
radial_num_basis=self.radial_num_basis,
radial_num_hidden=self.radial_num_hidden,
radial_num_layers=self.radial_num_layers,
num_edge_features=self.d_embed_edge,
num_heads=self.attn_num_heads,
rc=self.rc,
include_edge_features=self.include_edge_features,
apply_layer_norm=self.apply_layer_norm,
attend_to_self=self.attend_to_self,
interaction_type=self.interaction_type
)
# ---- define the update net
self.nonlinearity = nonlinearity
assert nonlinearity == "gated"
self.layers = torch.nn.ModuleList()
for _ in range(self.num_layers):
self.layers.append(UpdateModule(self.irreps, # in
self.irreps, # out
apply_resnet=True)
)
# final layer predicts transformation
self.layer_euclidean = UpdateModule(self.irreps,
(0, 2), # out
apply_resnet=False)
def forward(self, s, v, R, T, edge_type_ij):
# embed edges
edges_ij = self.embed_edge(edge_type_ij)
# compute dist and spherical harmonics
# no grad flow here with the heuristic that the network should focus on
# the "next move" given specified geometry
with torch.no_grad():
r_ij_vec = T[None, :] - T[:, None]
r_ij = (r_ij_vec.square().sum(-1) + 1e-6).sqrt()
r_ij_vec = r_ij_vec / r_ij.unsqueeze(-1)
weight_cutoff = compute_weight_cutoff(r_ij, self.rc) if not self.disable_cutoff else None
# update node embeddings
for layer in self.layers:
s, v = layer(s, v, edges_ij, r_ij, r_ij_vec, weight_cutoff)
# predict delta euclidean
_, out = self.layer_euclidean(s, v, edges_ij, r_ij, r_ij_vec, weight_cutoff)
dT = out[:, 0]
u = out[:, 1]
dR = R_from_quaternion_u(u)
# -- update euclidean
# cannot detach dR, T here to get the loss
T = T + dT
# steer embedding
R = compose_rotations(dR, R)
return R, T