-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_point.py
137 lines (118 loc) · 5.02 KB
/
single_point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#%%
import os
import shutil
from pathlib import Path
from onion_clustering import main
def perform_onion(path,
output_folder,
tau_w,
t_smooth,
t_delay,
t_conv,
time_units,
example_id,
num_tau_w,
min_tau_w,
min_t_smooth,
max_t_smooth,
step_t_smooth,
max_tau_w,
bins):
##############################################################################
### Set all the analysis parameters ###
# Use git clone [email protected]:matteobecchi/onion_example_files.git
# to download example datasets
PATH_TO_INPUT_DATA = path
TAU_WINDOW = tau_w # time resolution of the analysis
### Optional parametrers ###
T_SMOOTH = t_smooth # window for moving average (default 1 - no average)
T_DELAY = t_delay # remove the first t_delay frames (default 0)
T_CONV = t_conv # convert frames in time units (default 1)
TIME_UNITS = time_units # the time units (default 'frames')
EXAMPLE_ID = example_id # particle plotted as example (default 0)
NUM_TAU_W = num_tau_w # number of values of tau_window tested (default 20)
MIN_TAU_W = min_tau_w # min number of tau_window tested (default 2)
MIN_T_SMOOTH = min_t_smooth # min value of t_smooth tested (default 1)
MAX_T_SMOOTH = max_t_smooth # max value of t_smooth tested (default 5)
STEP_T_SMOOTH = step_t_smooth # increment in value of t_smooth tested (default 1)
MAX_TAU_W = max_tau_w # max number of tau_window tested (default is auto)
BINS = bins # number of histogram bins (default is auto)
##############################################################################
### Create the output directory and move there ###
original_dir = Path.cwd()
output_path = Path(f"./{output_folder}")
if output_path.exists():
shutil.rmtree(output_path)
output_path.mkdir()
os.chdir(output_path)
try:
### Create the 'data_directory.txt' file ###
with open("data_directory.txt", "w+", encoding="utf-8") as file:
print(PATH_TO_INPUT_DATA, file=file)
### Create the 'input_parameter.txt' file ###
with open("input_parameters.txt", "w+", encoding="utf-8") as file:
print(f"tau_window\t{TAU_WINDOW}", file=file)
print(f"t_smooth\t{T_SMOOTH}", file=file)
print(f"t_delay\t{T_DELAY}", file=file)
print(f"t_conv\t{T_CONV}", file=file)
print(f"t_units\t{TIME_UNITS}", file=file)
print(f"example_ID\t{EXAMPLE_ID}", file=file)
print(f"num_tau_w\t{NUM_TAU_W}", file=file)
print(f"min_tau_w\t{MIN_TAU_W}", file=file)
print(f"min_t_smooth\t{MIN_T_SMOOTH}", file=file)
print(f"max_t_smooth\t{MAX_T_SMOOTH}", file=file)
print(f"step_t_smooth\t{STEP_T_SMOOTH}", file=file)
if MAX_TAU_W != "auto":
print(f"max_tau_w\t{MAX_TAU_W}", file=file)
if BINS != "auto":
print(f"bins\t{BINS}", file=file)
### Perform the clustering analysis ###
cl_ob = main.main(full_output = False)
### Plot the output figures in output_figures/ ###
# Plots number of states and fraction_0 as a function of tau_window
cl_ob.plot_tra_figure()
cl_ob.plot_pop_fractions()
# Plots the raw data
cl_ob.plot_input_data("Fig0")
# Plots the data with the clustering thresholds and Gaussians
cl_ob.plot_cumulative_figure()
# Plots the colored signal for the particle with `example_ID` ID
cl_ob.plot_one_trajectory()
# Plots the mean time sequence inside each state
cl_ob.data.plot_medoids()
# Plots the population of each state as a function of time
cl_ob.plot_state_populations()
# Plots the Sankey diagram between the input time_windows
#cl_ob.sankey([0, 10, 20, 30, 40])
# Writes the files for the visualization of the colored trj
if os.path.exists("../../trajectory.xyz"):
cl_ob.print_colored_trj_from_xyz("../../trajectory.xyz")
else:
cl_ob.print_labels()
finally:
os.chdir(original_dir)
directory = "arrays"
descriptors = []
for filename in os.listdir(directory):
if(filename.endswith("SOAP_10.npy")):
continue
if os.path.isfile(os.path.join(directory, filename)):
descriptors.append(filename)
d = "sp_10_LENS_10.npy"
tau = 8
perform_onion(path=f"../../arrays/{d}",
output_folder=f"single/{d[:-4]}_{tau}",
tau_w=tau,
t_smooth=1,
t_delay=1,
t_conv=0.1,
time_units="ns",
example_id=0,
num_tau_w=20,
min_tau_w=2,
min_t_smooth=1,
max_t_smooth=0,
step_t_smooth=1,
max_tau_w="auto",
bins="auto")
# %%