-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_compute_LENS.py
48 lines (46 loc) · 1.94 KB
/
2_compute_LENS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#THIS CODE IS USED TO COMPUTE LENS DESCRIPTOR
import h5py
import numpy as np
import dynsight
#LENS cutoff
LENS_CUTOFF = 10
#Load HDF5 file (see code 1_*)
in_file = "ice_water_O.hdf5"
traj_name = "ice_water_O"
frames_range = slice(0,500)
print(f"{'-'*10}\nLENS\n{'-'*10}")
with h5py.File(in_file,"r") as file:
tgroup = file["Trajectories"][traj_name]
print(tgroup)
universe = dynsight.hdf5er.create_universe_from_slice(tgroup, frames_range)
print("Computing LENS")
neig_counts = dynsight.lens.list_neighbours_along_trajectory(universe, cutoff = LENS_CUTOFF)
LENS, nn, *_=dynsight.lens.neighbour_change_in_time(neig_counts)
results = np.array([LENS,nn])
print("Saving LENS results")
with h5py.File(in_file, "r+") as file:
file["LENS"].create_dataset(f"LENS_{int(LENS_CUTOFF)}", data=results)
with h5py.File(in_file, "r") as file:
LENS = np.array(file["LENS"][f"LENS_{int(LENS_CUTOFF)}"][0,:,:])
np.save(f"arrays/LENS_{int(LENS_CUTOFF)}",LENS)
# Local denoising (Spatial smoothing)
input_file = "ice_water_O.hdf5"
with h5py.File(input_file, "r") as file:
traj_array = np.array(file["Trajectories/ice_water_O/Trajectory"])
traj_array = traj_array.transpose(1,0,2)
box_array = np.array(file["Trajectories/ice_water_O/Box"])
sp_cutoff = [10]
for cutoff in sp_cutoff:
input_array = f"arrays/LENS_{int(LENS_CUTOFF)}.npy"
print(f"SPATIAL SMOOTHING {cutoff} - ({input_array})")
res_array = f"arrays/sp_{cutoff}_LENS_{int(LENS_CUTOFF)}.npy"
volume_shape = "sphere"
descriptor = np.load(input_array)
print(descriptor.shape)
descriptor = descriptor.T
averaged = dynsight.data_processing.spatialaverage(traj_array,
box_array,
descriptor,
cutoff=cutoff,
volume_shape = volume_shape)
np.save(res_array,averaged.T)