YOLO v1 Tiny is a real-time object detection model from TensorFlow.js* framework. This model was pretrained on VOC* dataset with 20 classes.
-
Install additional dependencies:
h5py keras tensorflowjs
-
Download model from here (tested on
aa4354c
commit). -
Convert model to Keras* format using
tensorflowjs_converter
script, e.g.:tensorflowjs_converter --input_format tfjs_layers_model --output_format keras <model_in>.json <model_out>.h5
-
Convert the produced model to protobuf format.
- Get conversion script from repository:
git clone https://github.com/amir-abdi/keras_to_tensorflow
- (Optional) Checkout the commit that the conversion was tested on:
git checkout c841508a88faa5aa1ffc7a4947c3809ea4ec1228
- Apply
keras_to_tensorflow.py.patch
:git apply keras_to_tensorflow.py.patch
- Run script:
python keras_to_tensorflow.py --input_model=<model_in>.h5 --output_model=<model_out>.pb
- Get conversion script from repository:
Metric | Value |
---|---|
Type | Detection |
GFLOPs | 6.988 |
MParams | 15.858 |
Source framework | TensorFlow.js* |
Accuracy metric obtained on VOC2012* validation dataset for converted model.
Metric | Value |
---|---|
mAP | 72.17% |
Image, name - input_1
, shape - 1,416,416,3
, format is B,H,W,C
where:
B
- batch sizeH
- heightW
- widthC
- channel
Channel order is RGB
.
Scale value - 255.
Image, name - input_1
, shape - 1,3,416,416
, format is B,C,H,W
where:
B
- batch sizeC
- channelH
- heightW
- width
Channel order is BGR
.
The array of detection summary info, name - conv2d_9/BiasAdd
, shape - 1,13,13,125
, format is B,Cx,Cy,N*25
where
B
- batch sizeN
- number of detection boxes for cellCx
,Cy
- cell index
Detection box has format [x
,y
,h
,w
,box_score
,class_no_1
, ..., class_no_20
], where:
- (
x
,y
) - raw coordinates of box center, apply sigmoid function to get coordinates relative to the cell h
,w
- raw height and width of box, apply exponential function and multiply by corresponding anchors to get height and width values relative to cellbox_score
- confidence of detection box, apply sigmoid function to get confidence in [0,1] rangeclass_no_1
,...,class_no_20
- probability distribution over the classes in logits format, apply softmax function and multiply by obtained confidence value to get confidence of each class
Mapping to class names provided by <omz_dir>/data/dataset_classes/voc_20cl.txt
file.
The anchor values are 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
.
The array of detection summary info, name - conv2d_9/BiasAdd/YoloRegion
, shape - 1,21125
, which could be reshaped to 1, 125, 13, 13
, format is B,N*25,Cx,Cy
where
B
- batch sizeN
- number of detection boxes for cellCx
,Cy
- cell index
Detection box has format [x
,y
,h
,w
,box_score
,class_no_1
, ..., class_no_20
], where:
- (
x
,y
) - coordinates of box center relative to the cell h
,w
- raw height and width of box, apply exponential function and multiply with corresponding anchors to get height and width values relative to the cellbox_score
- confidence of detection box in [0,1] rangeclass_no_1
,...,class_no_20
- probability distribution over the classes in the [0,1] range, multiply by confidence value to get confidence of each class
Mapping to class names provided by <omz_dir>/data/dataset_classes/voc_20cl.txt
file.
The anchor values are 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
.
You can download models and if necessary convert them into Inference Engine format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
python3 <omz_dir>/tools/downloader/downloader.py --name <model_name>
An example of using the Model Converter:
python3 <omz_dir>/tools/downloader/converter.py --name <model_name>
The original model is distributed under the following license:
Copyright (c) 2018 Qian Sha
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.