Skip to content

Latest commit

 

History

History
87 lines (56 loc) · 2.49 KB

resnest-50-pytorch.md

File metadata and controls

87 lines (56 loc) · 2.49 KB

resnest-50-pytorch

Use Case and High-Level Description

ResNeSt-50 is image classification model pretrained on ImageNet dataset. ResNeSt is stacked in ResNet-style from modular Split-Attention blocks that enables attention across feature-map groups.

The model input is a blob that consists of a single image of "1x3x224x224" in RGB order.

The model output is typical object classifier for the 1000 different classifications matching with those in the ImageNet database.

For details see repository and paper.

Specification

Metric Value
Type Classification
GFLOPs 10.8148
MParams 27.4493
Source framework PyTorch*

Accuracy

Metric Value
Top 1 81.11%
Top 5 95.36%

Input

Original model

Image, name - data, shape - 1,3,224,224, format is B,C,H,W where:

  • B - batch size
  • C - channel
  • H - height
  • W - width

Channel order is RGB. Mean values - [123.675,116.28,103.53], scale values - [58.395,57.12,57.375].

Converted model

Image, name - data, shape - 1,3,224,224, format is B,C,H,W where:

  • B - batch size
  • C - channel
  • H - height
  • W - width

Channel order is BGR.

Output

Original model

Object classifier according to ImageNet classes, name - prob, shape - 1,1000, output data format is B,C where:

  • B - batch size
  • C - Predicted probabilities for each class in [0, 1] range

Converted model

The converted model has the same parameters as the original model.

Download a Model and Convert it into Inference Engine Format

You can download models and if necessary convert them into Inference Engine format using the Model Downloader and other automation tools as shown in the examples below.

An example of using the Model Downloader:

python3 <omz_dir>/tools/downloader/downloader.py --name <model_name>

An example of using the Model Converter:

python3 <omz_dir>/tools/downloader/converter.py --name <model_name>

Legal Information

The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in APACHE-2.0.txt.

[*] Other names and brands may be claimed as the property of others.