-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmvr_algorithms.py
206 lines (172 loc) · 6.56 KB
/
mvr_algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# -*- coding: utf-8 -*-
"""
Implementación de algoritmos sobre grafos.
Autor: Francisco Manuel Valle Ruiz
Última actualizacion: Prim y Kruskal
"""
import random
from collections import deque
from Queue import PriorityQueue
from mvr_graph import *
from mvr_edge_queue import *
from mvr_utils import *
##########################################
##########################################
##### #####
##### Graph Algorithms #####
##### #####
##########################################
##########################################
####################################################
### searches ###
####################################################
def bfs(G):
#n, _ = G.random_node()
if len(G) == 0:
return None
n = sorted(G.nodes.keys())[0]
print "Comenzando con: ", n
spanning_tree = Graph()
queue = deque()
spanning_tree.add(n)
queue.append(n)
while queue:
v = queue.popleft()
#print "Revisando: ", v
for neigh in sorted(G.nodes[v].keys()):
if neigh not in spanning_tree.getNodes():
#print "---Agregando: ", neigh
spanning_tree.add(neigh)
spanning_tree.addEdge(v, neigh)
#print "---tree so far:",spanning_tree
#print "-"*20
if spanning_tree.is_same_size(G):
return spanning_tree
else:
queue.append(neigh)
return (spanning_tree if spanning_tree.is_same_size(G) else
None)
def dfs(G):
return dfs_it(G)
def dfs_it(G): #Iterative implementation
if len(G) == 0:
return None
#n, _ = G.random_node()
spanning_tree = Graph("Arbol de expansión, depth-first search iterativo")
stack = deque()
n = sorted(G.nodes.keys())[0]
spanning_tree.add(n)
while True:
edges_not_in_tree = filter(lambda neigh: neigh not in spanning_tree, sorted(G.nodes[n].keys()))
if edges_not_in_tree:
neigh = edges_not_in_tree[0]
spanning_tree.add(neigh)
spanning_tree.addEdge(n, neigh)
stack.append(n)
if spanning_tree.is_same_size(G):
return spanning_tree
n = neigh
elif stack:
n = stack.pop()
else:
return (spanning_tree if spanning_tree.is_same_size(G) else None)
def dfs_re(G): # Recursive implementation
def dfs_recursive(G, n, spanning_tree):
for neigh in G.nodes[n]:
if neigh not in spanning_tree:
spanning_tree.add(neigh)
spanning_tree.addEdge(n, neigh)
#print "Llamando a funcion con " + str(neigh) + "y con " + str(spanning_tree)
dfs_recursive(G, neigh, spanning_tree)
n, _ = G.random_node()
spanning_tree = Graph("Arbol de expansion, depth-first search recursivo")
spanning_tree.add(n)
dfs2_recursive(G, n, spanning_tree)
return (spanning_tree if spanning_tree.is_same_size(G) else None)
####################################################
### min-expansion trees ###
####################################################
def prim(G): # For minimum expansion tree
# Create tree
T = Graph("Prim's minimum spanning tree of "+G.getName(), directed=G.is_directed())
# Create priority queue and auxiliar function to mark edges
edges_queue = EdgePriorityQueue()
def mark_edges(n):
n_edges = G.getEdges(n)
for v in n_edges:
if v not in T:
# "mark" (put in e.p.queue) all the edges connecting n and nodes not in T
print "Marcando arista: "+str((n,v,n_edges[v]))
edges_queue.put( (n, v), n_edges[v])
# Add first element (n) to T and mark edges
n, _ = G.random_node()
T.add(n)
mark_edges(n)
while(len(T) != len(G)):
if not edges_queue.empty():
edge, w = edges_queue.get()
n1, n2 = edge
if n2 not in T:
T.addEdge(n1, n2, w)
#print "Se agrego una arista a T: ", (n1,n2,w)
#print "T quedo asi: ",T
mark_edges(n2)
else:
print "Al parecer no existe 'prim'. Este es el estado de las cosas:"
print T
return None
return T
def kruskal(G): # For minimum expansion forest
"""
Recibe un grafo y devuelve un arreglo que contiene los arboles que
conforman el bosque de mínima expansión. Si la gráfica es conexa
el arreglo contiene una sola gráfica.
"""
edges_queue = EdgePriorityQueue(G)
forest = []
def in_forest(n):
for tree in forest:
for node in tree:
if n == node or n in tree.nodes[node]:
return True
return False
def get_tree(n):
for tree in forest:
for node in tree.nodes:
if n == node or n in tree.nodes[node]:
return tree
return False
def success_tree():
successful = None
for tree in forest:
if tree.countEdges() == (len(G)-1):
successful = tree
return successful
tree_num = 0
while( not edges_queue.empty() ):
e, w = edges_queue.get()
n1, n2 = e
t1 = get_tree(n1)
t2 = get_tree(n2)
if not t1 and not t2: # los extremos no estan en arboles
new_tree = Graph("AuxTree "+str(tree_num), directed=G.directed)
tree_num += 1
new_tree.addEdge(n1,n2, w)
forest.append(new_tree)
elif ((not t1 and t2) or (t1 and not t2)):
if t1:
t1.addEdge(n1, n2, w) # checar si n1, n2 estan en orden correcto
else:
t2.addEdge(n1, n2, w) # checar si n1, n2 estan en orden correcto
elif t1 != t2: # mezclar t1 y t2
t1_index = forest.index(t1)
t1 = t1+t2
t1.addEdge(n1,n2,w)
forest[t1_index] = t1
forest.remove(t2)
# elif t1 == t2: # ignorar arista por confilcto de ciclos
# Hice algunos cambios en esta ultima parte pero no los revise. Si hay algun
# error, revisar aqui:
for i, tree in enumerate(forest):
tree.rename(G.name + "'s Least-Weight Spanning Tree (Kruskal) - " + str(i))
return forest