-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy patherts_smooth1.m
153 lines (142 loc) · 3.97 KB
/
erts_smooth1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
%ERTS_SMOOTH1 Extended Rauch-Tung-Striebel smoother
%
% Syntax:
% [M,P,D] = ERTS_SMOOTH1(M,P,A,Q,[a,W,param,same_p])
%
% In:
% M - NxK matrix of K mean estimates from Unscented Kalman filter
% P - NxNxK matrix of K state covariances from Unscented Kalman Filter
% A - Derivative of a() with respect to state as
% matrix, inline function, function handle or
% name of function in form A(x,param) (optional, default eye())
% Q - Process noise of discrete model (optional, default zero)
% a - Mean prediction E[a(x[k-1],q=0)] as vector,
% inline function, function handle or name
% of function in form a(x,param) (optional, default A(x)*X)
% W - Derivative of a() with respect to noise q
% as matrix, inline function, function handle
% or name of function in form W(x,param) (optional, default identity)
% param - Parameters of a. Parameters should be a single cell array, vector or a matrix
% containing the same parameters for each step or if different parameters
% are used on each step they must be a cell array of the format
% { param_1, param_2, ...}, where param_x contains the parameters for
% step x as a cell array, a vector or a matrix. (optional, default empty)
% same_p - 1 if the same parameters should be
% used on every time step (optional, default 1)
%
%
%
% Out:
% K - Smoothed state mean sequence
% P - Smoothed state covariance sequence
% D - Smoother gain sequence
%
% Description:
% Extended Rauch-Tung-Striebel smoother algorithm. Calculate
% "smoothed" sequence from given Kalman filter output sequence by
% conditioning all steps to all measurements.
%
% Example:
%
% See also:
% EKF_PREDICT1, EKF_UPDATE1
% History:
% 04.05.2007 JH Added the possibility to pass different parameters for a and h
% for each step.
% 2006 SS Initial version.
%
% Copyright (C) 2006 Simo Särkkä
% Copyright (C) 2007 Jouni Hartikainen
%
% $Id$
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [M,P,D] = erts_smooth1(M,P,A,Q,a,W,param,same_p)
%
% Check which arguments are there
%
if nargin < 3
A = [];
end
if nargin < 4
Q = [];
end
if nargin < 5
a = [];
end
if nargin < 6
W = [];
end
if nargin < 7
param = [];
end
if nargin < 8
same_p = [];
end
%
% Apply defaults
%
if isempty(A)
A = eye(size(M,1));
end
if isempty(Q)
Q = zeros(size(M,1));
end
if isempty(W)
W = eye(size(M,1),size(Q,2));
end
if isempty(same_p)
same_p = 1;
end
%
% Extend Q if NxN matrix
%
if size(Q,3)==1
Q = repmat(Q,[1 1 size(M,2)]);
end
%
% Run the smoother
%
D = zeros(size(M,1),size(M,1),size(M,2));
for k=(size(M,2)-1):-1:1
if isempty(param)
params = [];
elseif same_p
params = param;
else
params = param{k};
end
%
% Perform prediction
%
if isempty(a)
m_pred = A*M(:,k);
elseif isnumeric(a)
m_pred = a;
elseif isstr(a) | strcmp(class(a),'function_handle')
m_pred = feval(a,M(:,k),params);
else
m_pred = a(M(:,k),params);
end
if isnumeric(A)
F = A;
elseif isstr(A) | strcmp(class(A),'function_handle')
F = feval(A,M(:,k),params);
else
F = A(M(:,k),params);
end
if isnumeric(W)
B = W;
elseif isstr(W) | strcmp(class(W),'function_handle')
B = feval(W,M(:,k),params);
else
B = W(M(:,k),params);
end
P_pred = F * P(:,:,k) * F' + B * Q(:,:,k) * B';
C = P(:,:,k) * F';
D(:,:,k) = C / P_pred;
M(:,k) = M(:,k) + D(:,:,k) * (M(:,k+1) - m_pred);
P(:,:,k) = P(:,:,k) + D(:,:,k) * (P(:,:,k+1) - P_pred) * D(:,:,k)';
end