-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
34 lines (25 loc) · 1.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
from torchvision.models import resnet101, ResNet101_Weights, resnet50, ResNet50_Weights, resnet18, ResNet18_Weights
class Resnet(nn.Module):
def __init__(self, arch, num_class, pretrained=False):
super(Resnet, self).__init__()
self.bottleneck_dim = 256
if arch == 'resnet18':
self.model = resnet18(weights=ResNet18_Weights.DEFAULT)
elif arch == 'resnet101':
self.model = resnet101(weights=ResNet101_Weights.DEFAULT)
elif arch == 'resnet50':
self.model = resnet50(weights=ResNet50_Weights.DEFAULT)
if pretrained:
self.model.load_state_dict(torch.load('logs/' + pretrained + '/pretrained_gen-model.tar'))
self.model.fc = nn.Linear(self.model.fc.in_features, self.bottleneck_dim)
bn = nn.BatchNorm1d(self.bottleneck_dim)
self.encoder = nn.Sequential(self.model, bn)
self.fc = nn.Linear(self.bottleneck_dim, num_class)
self.fc = nn.utils.weight_norm(self.fc, dim=0)
def forward(self, x):
features = self.encoder(x)
features = torch.flatten(features, 1)
logits = self.fc(features)
return features, logits