-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTPT_functions.py
359 lines (334 loc) · 13.9 KB
/
TPT_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
import pandas as pd
from os import path
import compress_pickle as pkl
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import MoNeT_MGDrivE as monet
def preProcessParallel(
exIx, expNum,
drive, analysisOI='HLT', prePath='./',
nodesAggLst=[[0]], fNameFmt='{}/{}-{}_',
MF=(True, True), cmpr='bz2', nodeDigits=4,
SUM=True, AGG=False, SPA=False, REP=False, SRP=True,
sexFilenameIdentifiers={"male": "M_", "female": "F_"}
):
(ix, expDirsMean, expDirsTrac) = exIx
monet.printProgress(ix+1, expNum, nodeDigits)
(pathMean, pathTraces) = (expDirsMean, expDirsTrac+'/')
expName = pathMean.split('/')[-1]
fNameFmt = '{}/{}-{}_'.format(prePath, expName, analysisOI)
preProcessLandscape(
pathMean, pathTraces, expName, drive, prePath,
analysisOI=analysisOI, nodesAggLst=nodesAggLst,
fNameFmt=fNameFmt, MF=MF, cmpr=cmpr, nodeDigits=nodeDigits,
SUM=SUM, AGG=AGG, SPA=SPA, REP=REP, SRP=SRP,
sexFilenameIdentifiers=sexFilenameIdentifiers
)
return None
def preProcessLandscape(
pathMean, pathTraces, expName, drive, prePath='./',
nodesAggLst=[[0]], analysisOI='HLT', fNameFmt='{}/{}-{}_',
MF=(True, True), cmpr='bz2', nodeDigits=4,
SUM=True, AGG=True, SPA=True, REP=True, SRP=True,
sexFilenameIdentifiers={"male": "M_", "female": "F_"}
):
dirsTraces = monet.listDirectoriesWithPathWithinAPath(pathTraces)
files = readExperimentFilenames(
pathMean, sexFilenameIdentifiers=sexFilenameIdentifiers
)
filesList = [monet.filterFilesByIndex(files, ix) for ix in nodesAggLst]
landReps = None
if REP or SRP:
landReps = loadAndAggregateLandscapeDataRepetitions(
dirsTraces, drive, MF[0], MF[1],
sexFilenameIdentifiers=sexFilenameIdentifiers
)
# for (nodeAggIx, pop) in enumerate(filesList):
# fName = fNameFmt + str(nodeAggIx).zfill(nodeDigits)
# preProcessSubLandscape(
# pop, landReps, fName, drive,
# nodesAggLst, nodeAggIx,
# MF=MF, cmpr=cmpr,
# SUM=SUM, AGG=AGG, SPA=SPA, REP=REP, SRP=SRP,
# )
return None
def loadAndAggregateLandscapeDataRepetitions(
paths,
aggregationDictionary,
male=True,
female=True,
dataType=float,
sexFilenameIdentifiers={"male": "M_", "female": "F_"}
):
"""
Description:
* Loads and aggregates the genotypes of the landscape accross
repetitions of the same experiment.
In:
* paths: Repetitions folders locations.
* aggregationDictionary: Genotypes and indices counts dictionary.
* male: Boolean to select male files for the aggregation.
* female: Boolean to select female files for the aggregation.
* dataType: Data type to save memory/processing time if possible.
Out:
* returnDict: Dictionary with genotypes and the loaded landscapes
for each one of the repetitions.
Notes:
* This function is meant to work with the traces plot, so it has a
higher dimension (repetitions) than regular spatial analysis
versions.
"""
pathsNumber = len(paths)
landscapes = [None] * pathsNumber
print(aggregationDictionary)
for i in range(0, pathsNumber):
filenames = readExperimentFilenames(
paths[i], sexFilenameIdentifiers=sexFilenameIdentifiers
)
loadedLandscape = monet.loadAndAggregateLandscapeData(
filenames, aggregationDictionary,
male=male, female=female, dataType=dataType
)
landscapes[i] = loadedLandscape["landscape"]
returnDict = {
"genotypes": aggregationDictionary["genotypes"],
"landscapes": landscapes
}
return returnDict
def preProcessSubLandscape(
pop, landReps, fName, drive,
nodesAggLst, nodeAggIx,
MF=(True, True), cmpr='bz2',
SUM=True, AGG=True, SPA=True, REP=True, SRP=True
):
if SUM:
sumData = monet.sumLandscapePopulationsFromFiles(pop, MF[0], MF[1])
print(sumData)
sumAgg = exp.aggregateGenotypesInNode(sumData, drive)
pkl.dump(sumAgg, fName+'_sum', compression=cmpr)
if AGG:
aggData = monet.loadAndAggregateLandscapeData(pop, drive, MF[0], MF[1])
pkl.dump(aggData, fName+'_agg', compression=cmpr)
if SPA:
geneSpaTemp = monet.getGenotypeArraysFromLandscape(aggData)
pkl.dump(geneSpaTemp, fName+'_spa', compression=cmpr)
if REP or SRP:
fLandReps = monet.filterAggregateGarbageByIndex(
landReps, nodesAggLst[nodeAggIx]
)
if REP:
pkl.dump(fLandReps, fName+'_rep', compression=cmpr)
if SRP:
fRepsSum = [sum(i) for i in fLandReps['landscapes']]
fRepsDict = {
'genotypes': fLandReps['genotypes'],
'landscapes': fRepsSum
}
pkl.dump(fRepsDict, fName+'_srp', compression=cmpr)
return None
def readExperimentFilenames(
experimentPath,
sexFilenameIdentifiers={"male": "", "female": ""},
exclusionPattern=None
):
defaultIdentifiers = {"male": ["M_", "ADM"], "female": ["F_", "AF1"]}
maleFiles = []
if 'male' in sexFilenameIdentifiers:
maleFiles = monet.getFileExperimentList(
experimentPath, sexFilenameIdentifiers['male']
)
if not maleFiles:
for i in defaultIdentifiers['male']:
fileList = monet.getFileExperimentList(experimentPath, i)
if fileList:
maleFiles = fileList
break
femaleFiles = []
if 'female' in sexFilenameIdentifiers:
femaleFiles = monet.getFileExperimentList(
experimentPath, sexFilenameIdentifiers['female']
)
if not femaleFiles:
for i in defaultIdentifiers['female']:
fileList = monet.getFileExperimentList(experimentPath, i)
if fileList:
femaleFiles = fileList
break
if exclusionPattern is not None:
maleFiles = [i for i in maleFiles if exclusionPattern(i)]
femaleFiles = [i for i in femaleFiles if exclusionPattern(i)]
return {"male": maleFiles, "female": femaleFiles}
def exportPstTracesPlotWrapper(
exIx, repFiles, xpidIx,
dfTTI, dfTTO, dfWOP, dfMNX, dfPOE, dfCPT,
STABLE_T, THS, QNT, STYLE, PT_IMG,
border=True, borderColor='#322E2D', borderWidth=1,
labelPos=(.75, .95), xpsNum=0, digs=3,
autoAspect=False, popScaler=1,
wopPrint=True, cptPrint=True,
poePrint=True, mnfPrint=True,
transparent=False,
ticksHide=True, sampRate=1,
fontsize=5, labelspacing=.1,
vlines=[], hlines=[],
wopColor='#3687ff'
):
padi = str(exIx+1).zfill(digs)
fmtStr = '{}+ File: {}/{}'
print(fmtStr.format(monet.CBBL, padi, len(repFiles), monet.CEND), end='\r')
repFile = repFiles[exIx]
(repDta, xpid) = (
pkl.load(repFile), monet.getXpId(repFile, xpidIx)
)
xpRow = [
monet.filterDFWithID(j, xpid, max=len(xpidIx)) for j in (
dfTTI, dfTTO, dfWOP, dfMNX, dfPOE, dfCPT
)
]
(tti, tto, wop) = [float(row[THS]) for row in xpRow[:3]]
(mnf, mnd, poe, cpt) = (
float(xpRow[3]['min']), float(xpRow[3]['minx']),
float(xpRow[4]['POE']), float(xpRow[5]['CPT'])
)
# Traces ------------------------------------------------------------------
pop = repDta['landscapes'][0][STABLE_T][-1]
# STYLE['yRange'] = (0, pop*popScaler)
exportTracesPlot(
repDta,
repFile.split('/')[-1][:-6]+str(QNT)+'-'+str(int(float(THS)*100)),
STYLE, PT_IMG,
vLines=[tti, tto, 0]+vlines, hLines=[0]+hlines, labelPos=labelPos,
border=border, borderColor=borderColor, borderWidth=borderWidth,
autoAspect=autoAspect, popScaler=popScaler,
wop=wop, wopPrint=wopPrint,
cpt=cpt, cptPrint=cptPrint,
poe=poe, poePrint=poePrint,
mnf=mnf, mnfPrint=mnfPrint,
wopColor=wopColor,
transparent=transparent, ticksHide=ticksHide, sampRate=sampRate,
fontsize=fontsize, labelspacing=labelspacing
)
return None
def exportTracesPlot(
tS, nS, STYLE, PATH_IMG, append='',
vLines=[0, 0], hLines=[0], labelPos=(.7, .95), autoAspect=False,
border=True, borderColor='#8184a7AA', borderWidth=2, popScaler=1,
wop=0, wopPrint=True,
cpt=0, cptPrint=False,
poe=0, poePrint=False,
mnf=0, mnfPrint=False,
wopColor='#3687ff',
transparent=False, ticksHide=True, sampRate=1,
fontsize=5, labelspacing=.1
):
# print(STYLE['xRange'][0])
if transparent:
plt.rcParams.update({
"figure.facecolor": (1.0, 0.0, 0.0, 0.0),
"axes.facecolor": (0.0, 1.0, 0.0, 0.0),
"savefig.facecolor": (0.0, 0.0, 1.0, 0.0),
})
figArr = monet.plotNodeTraces(tS, STYLE, sampRate=sampRate)
axTemp = figArr[0].get_axes()[0]
STYLE['yRange'] = (STYLE['yRange'][0], STYLE['yRange'][1]*popScaler)
axTemp.set_xlim(STYLE['xRange'][0], STYLE['xRange'][1])
axTemp.set_ylim(STYLE['yRange'][0], STYLE['yRange'][1])
if autoAspect:
axTemp.set_aspect(aspect=monet.scaleAspect(STYLE["aspect"], STYLE))
else:
axTemp.set_aspect(aspect=STYLE["aspect"])
if ticksHide:
axTemp.axes.xaxis.set_ticklabels([])
axTemp.axes.yaxis.set_ticklabels([])
axTemp.axes.xaxis.set_visible(False)
axTemp.axes.yaxis.set_visible(False)
# axTemp.xaxis.set_tick_params(width=0)
# axTemp.yaxis.set_tick_params(width=0)
axTemp.tick_params(left=False, labelleft=False, bottom=False, labelbottom=False)
axTemp.set_axis_off()
axTemp.xaxis.set_ticks(np.arange(STYLE['xRange'][0], STYLE['xRange'][1], 365))
axTemp.yaxis.set_ticks(np.arange(STYLE['yRange'][0], STYLE['yRange'][1], STYLE['yRange'][1]/4))
axTemp.grid(which='major', axis='y', lw=.5, ls='-', alpha=0.2, color=(0, 0, 0))
axTemp.grid(which='major', axis='x', lw=.5, ls='-', alpha=0.2, color=(0, 0, 0))
days = tS['landscapes'][0].shape[0]*sampRate
if (vLines[0] > 0) and (vLines[1] <= days) and (wop > 0) and (vLines[0] < vLines[1]):
axTemp.axvspan(vLines[0], vLines[1], facecolor=wopColor, zorder=-10)
axTemp.axvline(vLines[0], ls='--', lw=.75, alpha=.8, color=wopColor, zorder=-5)
axTemp.axvline(vLines[1], ls='--', lw=.75, alpha=.8, color=wopColor, zorder=-5)
if (vLines[0] > 0) and (vLines[1] <= days) and (wop > 0) and (vLines[0] > vLines[1]):
axTemp.axvspan(vLines[0], vLines[1], alpha=0.15, facecolor='#FF5277', zorder=0)
axTemp.axvline(vLines[0], alpha=0.75, ls='-', lw=.1, color='#FF1A4B', zorder=0)
axTemp.axvline(vLines[1], alpha=0.75, ls='-', lw=.1, color='#FF1A4B', zorder=0)
for hline in hLines:
axTemp.axhline(hline, alpha=.25, zorder=10, ls='-', lw=.2, color='#000000')
for vline in vLines[2:]:
axTemp.axvline(vline, alpha=.25, zorder=10, ls='-', lw=.2, color='#000000')
# Print metrics -----------------------------------------------------------
if wopPrint:
axTemp.text(
labelPos[0], labelPos[1]-labelspacing*0, 'WOP: '+str(int(wop)),
verticalalignment='bottom', horizontalalignment='left',
transform=axTemp.transAxes,
color='#00000055', fontsize=fontsize
)
if cptPrint:
axTemp.text(
labelPos[0], labelPos[1]-labelspacing*1, 'CPT: {:.3f}'.format(cpt),
verticalalignment='bottom', horizontalalignment='left',
transform=axTemp.transAxes,
color='#00000055', fontsize=fontsize
)
if mnfPrint:
axTemp.text(
labelPos[0], labelPos[1]-labelspacing*2, 'MIN: {:.3f}'.format(mnf),
verticalalignment='bottom', horizontalalignment='left',
transform=axTemp.transAxes,
color='#00000055', fontsize=fontsize
)
if poePrint:
axTemp.text(
labelPos[0], labelPos[1]-labelspacing*3, 'POE: {:.3f}'.format(poe),
verticalalignment='bottom', horizontalalignment='left',
transform=axTemp.transAxes,
color='#00000055', fontsize=fontsize
)
# --------------------------------------------------------------------------
#axTemp.tick_params(color=(0, 0, 0, 0.5))
# extent = axTemp.get_tightbbox(figArr[0]).transformed(figArr[0].dpi_scale_trans.inverted())
if border:
axTemp.set_axis_on()
plt.setp(axTemp.spines.values(), color=borderColor)
pad = 0.025
for axis in ['top','bottom','left','right']:
axTemp.spines[axis].set_linewidth(borderWidth)
else:
pad = 0
axTemp.set_xlim(STYLE['xRange'][0], STYLE['xRange'][1])
figArr[0].savefig(
"{}/{}.png".format(PATH_IMG, nS),
dpi=STYLE['dpi'], facecolor=None,
orientation='portrait', format='png',
transparent=transparent, bbox_inches='tight', pad_inches=pad
)
plt.clf()
plt.cla()
plt.close('all')
plt.gcf()
return None
def exportPreTracesParallel(
exIx, STYLE, PT_IMG,
border=True, borderColor='#322E2D', borderWidth=1, autoAspect=False,
xpNum=0, digs=3, vLines=[0, 0], hLines=[0], popScaler=1,
transparent=True, sampRate=1
):
monet.printProgress(exIx[0], xpNum, digs)
repFilePath = exIx[1][1]
repDta = pkl.load(repFilePath)
name = path.splitext(repFilePath.split('/')[-1])[0][:-4]
exportTracesPlot(
repDta, name, STYLE, PT_IMG, wopPrint=False, autoAspect=autoAspect,
border=border, borderColor=borderColor, borderWidth=borderWidth,
vLines=vLines, transparent=transparent, sampRate=sampRate
)
return None