-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathinference.py
100 lines (76 loc) · 3.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import cv2
import torch
from PIL import Image
import matplotlib.pyplot as plt
from collections import OrderedDict
from torch.autograd import Variable
import tools.utils as utils
import tools.dataset as dataset
from models.moran import MORAN
class Recognizer:
def __init__(self, model_path):
alphabet = '0:1:2:3:4:5:6:7:8:9:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:$'
self.cuda_flag = torch.cuda.is_available()
if self.cuda_flag:
self.MORAN = MORAN(1, len(alphabet.split(':')), 256, 32, 100, BidirDecoder=True, CUDA=self.cuda_flag)
self.MORAN = self.MORAN.cuda()
else:
self.MORAN = MORAN(1, len(alphabet.split(':')), 256, 32, 100, BidirDecoder=True, inputDataType='torch.FloatTensor', CUDA=self.cuda_flag)
print('loading pretrained model from %s' % model_path)
if self.cuda_flag:
state_dict = torch.load(model_path)
else:
state_dict = torch.load(model_path, map_location='cpu')
MORAN_state_dict_rename = OrderedDict()
for k, v in state_dict.items():
name = k.replace("module.", "") # remove `module.`
MORAN_state_dict_rename[name] = v
self.MORAN.load_state_dict(MORAN_state_dict_rename)
for p in self.MORAN.parameters():
p.requires_grad = False
self.MORAN.eval()
self.converter = utils.strLabelConverterForAttention(alphabet, ':')
self.transformer = dataset.resizeNormalize((100, 32))
def preprocess(self, img):
image = Image.fromarray(img[..., ::-1]).convert('L')
image = self.transformer(image)
image = image.view(1, *image.size())
return image
def predict(self, img_batch):
batch_size = int(img_batch.size(0))
if self.cuda_flag:
img_batch = img_batch.cuda()
# img_batch = Variable(img_batch)
text = torch.LongTensor(batch_size * 5)
length = torch.IntTensor(batch_size)
# text = Variable(text)
# length = Variable(length)
max_iter = 20
t, l = self.converter.encode(['0' * max_iter] * batch_size)
utils.loadData(text, t)
utils.loadData(length, l)
output = self.MORAN(img_batch, length, text, text, test=True, debug=True)
return output, length
def post_process(self, output, length):
preds, preds_reverse = output[0]
# demo = output[1]
_, preds = preds.max(1)
_, preds_reverse = preds_reverse.max(1)
sim_preds = self.converter.decode(preds.data, length.data)
sim_preds = list(map(lambda x: x.strip().split('$')[0], sim_preds))
sim_preds_reverse = self.converter.decode(preds_reverse.data, length.data)
sim_preds_reverse = list(map(lambda x: x.strip().split('$')[0], sim_preds_reverse))
return sim_preds, sim_preds_reverse
def __call__(self, images):
unit_size = len(images) == 1
if unit_size:
images = images * 2
img_tensors = []
for img in images:
img_tensors.append(self.preprocess(img))
img_batch = torch.cat(img_tensors)
output, length = self.predict(img_batch)
sim_preds, sim_preds_reverse = self.post_process(output, length)
if unit_size:
sim_preds = sim_preds[:1]
return sim_preds