-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_to_output2d.py
executable file
·381 lines (351 loc) · 12.6 KB
/
merge_to_output2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/usr/bin/env python3
"""
usage: merge_to_output2d.py [-h] [-o output_netcdf] [-v] [-z] [files ...]
Merge files of pseudo-parallelised Cable or Casa output in land format to
combined 2D arrays with latitude/longitude.
positional arguments:
files input netcdf files.
options:
-h, --help show this help message and exit
-o output_netcdf, --outfile output_netcdf
output netcdf file name
(default: first_input-merged.nc).
-v, --verbose Feedback during copy (default: no feedback).
-z, --zip Use netCDF4 variable compression
(default: same format as input file).
Example
-------
python merge_to_output2d.py -v -z -o cru_out_casa_2009_2011.nc \
run*/outputs/cru_out_casa_2009_2011.nc
History
-------
Written Matthias Cuntz, May 2020
- from unpack_to_output2d.py
Modified Matthias Cuntz, May 2024
- formatted strings in all print statements
- better formatting of print of variable slices
Remember:
https://chase-seibert.github.io/blog/2013/08/03/diagnosing-memory-leaks-python.html
https://gist.github.com/schlamar/2311116
https://stackoverflow.com/questions/15455048/releasing-memory-in-python
"""
import argparse
import sys
import numpy as np
import netCDF4 as nc
import cablepop as cp
import pyjams as pj
import time as ptime
import psutil
import gc
# -------------------------------------------------------------------------
# Command line
#
ofile = None
verbose = False
izip = False
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description=('Merge files of pseudo-parallelised Cable or Casa output'
' in land format to combined 2D arrays with'
' latitude/longitude.') )
parser.add_argument('-o', '--outfile', action='store',
default=ofile, dest='ofile', metavar='output_netcdf',
help=('output netcdf file name (default:'
' first_input-merged.nc).'))
parser.add_argument('-v', '--verbose', action='store_true', default=verbose,
dest='verbose',
help='Feedback during copy (default: no feedback).')
parser.add_argument('-z', '--zip', action='store_true', default=izip,
dest='izip',
help=('Use netCDF4 variable compression (default:'
' same format as input file).'))
parser.add_argument('ifiles', nargs='*', default=None, metavar='files',
help='input netcdf files.')
args = parser.parse_args()
ofile = args.ofile
verbose = args.verbose
izip = args.izip
ifiles = args.ifiles
del parser, args
if len(ifiles) == 0:
raise IOError('Input files must be given.')
if verbose:
tstart = ptime.time()
gb = 1073741824. # (1024 * 1024 * 1024)
# -------------------------------------------------------------------------
# Copy data
#
# Input file
ifile = ifiles[0]
fi = nc.Dataset(ifile, 'r')
if verbose:
print(f'Check first input file: {ifile}')
ncvars = list(fi.variables.keys())
ntime = fi.dimensions['time'].size
# Output file
if ofile is None: # Default output filename
ofile = pj.ncio.set_output_filename(ifile, '-merged')
if verbose:
print(f'Create output file: {ofile}')
if izip:
oformat = 'NETCDF4'
else:
if 'file_format' in dir(fi):
oformat = fi.file_format
else:
oformat = 'NETCDF3_64BIT_OFFSET'
fo = nc.Dataset(ofile, 'w', format=oformat)
# get latitude/longitude
if 'local_lat' in fi.variables:
ilats = fi.variables['local_lat'][:]
ilons = fi.variables['local_lon'][:]
else:
ilats = fi.variables['latitude'][:]
ilons = fi.variables['longitude'][:]
nland = ilats.size
if 'x' in fi.dimensions: # use existing grid
olat = fi.variables['y'][:]
olon = fi.variables['x'][:]
nlat = olat.size
nlon = olon.size
else: # create new global grid -60 to +90 latitudes
# 0.5, 1 degree
dlon = np.abs(np.diff(np.unique(np.sort(ilons)))).min()
if np.all(ilats == ilats[0]):
# if only few cells on one latitude band
dlat = dlon
else:
# 0.5, 1 degree
dlat = np.abs(np.diff(np.unique(np.sort(ilats)))).min()
nlat = np.rint(150. / dlat).astype(int) # 300, 150
nlon = np.rint(360. / dlon).astype(int) # 720, 360
clat = ilats.min() % 1. # 0.0 or 0.25, 0.0 or 0.5
clon = ilons.min() % 1. # 0.0 or 0.25, 0.0 or 0.5
# new lats
olat = -60. + clat + np.arange(nlat) / float(nlat - 1) * (150. - dlat)
olat = olat[::-1]
# new lons
olon = -180. + clon + np.arange(nlon) / float(nlon - 1) * (360. - dlon)
olon2d, olat2d = np.meshgrid(olon, olat) # new lats, lons in 2D
# Copy global attributes, adding this script
pj.ncio.copy_global_attributes(fi, fo,
add={'history': ptime.asctime() + ': ' +
' '.join(sys.argv)})
# Copy dimensions
pj.ncio.copy_dimensions(fi, fo,
removedim=['land', 'ntile'],
adddim={'x': nlon, 'y': nlat})
# Create static variables (independent of time)
# if 'local_lat' in fi.variables:
# renvar = {'latitude': 'nav_lat', 'longitude': 'nav_lon'}
# else:
# renvar = {}
renvar = {}
pj.ncio.create_variables(fi, fo, time=False, izip=izip, fill=True,
chunksizes=False, renamevar=renvar,
replacedim={'land': ('y', 'x'),
'ntile': ('y', 'x')})
# create dynamic variables (time dependent)
pj.ncio.create_variables(fi, fo, time=True, izip=izip, fill=True,
chunksizes=False, renamevar=renvar,
replacedim={'land': ('y', 'x'),
'ntile': ('y', 'x')})
# create x and y for cdo, etc.
if 'x' not in fi.variables:
if verbose:
print('Create x')
nvar = {'name': 'x',
'dtype': ilons.dtype,
'dimensions': ('x'),
'units': 'degrees_east'}
ovar = pj.ncio.create_new_variable(nvar, fo)
ovar[:] = olon
if 'y' not in fi.variables:
if verbose:
print('Create y')
nvar = {'name': 'y',
'dtype': ilats.dtype,
'dimensions': ('y'),
'units': 'degrees_north'}
ovar = pj.ncio.create_new_variable(nvar, fo)
ovar[:] = olat
# write time for correct output shape
if verbose:
print('Write time')
ivar = fi.variables['time']
ovar = fo.variables['time']
ovar[:] = ivar[:]
fi.close()
fo.close()
if verbose:
print('Get all indexes')
nfiles = len(ifiles)
iidl = []
oidx = []
oidy = []
for nfile, ifile in enumerate(ifiles):
fi = nc.Dataset(ifile, 'r')
# Check time
ntime1 = fi.dimensions['time'].size
if ntime1 != ntime:
fi.close()
raise ValueError(f'Time not the same in {ifiles[0]} and in {ifile}')
# get latitude/longitude indices
if 'local_lat' in fi.variables:
ilats = fi.variables['local_lat'][:]
ilons = fi.variables['local_lon'][:]
else:
ilats = fi.variables['latitude'][:]
ilons = fi.variables['longitude'][:]
nland = ilats.size
if 'x' in fi.dimensions: # use existing grid
olat = fi.variables['y'][:]
olon = fi.variables['x'][:]
nlat = olat.size
nlon = olon.size
else: # create new global grid -60 to +90 latitudes
# 0.5, 1 degree
dlon = np.abs(np.diff(np.unique(np.sort(ilons)))).min()
if np.all(ilats == ilats[0]):
# if only few cells on one latitude band
dlat = dlon
else:
# 0.5, 1 degree
dlat = np.abs(np.diff(np.unique(np.sort(ilats)))).min()
nlat = np.rint(150. / dlat).astype(int) # 300, 150
nlon = np.rint(360. / dlon).astype(int) # 720, 360
clat = ilats.min() % 1. # 0.0 or 0.25, 0.0 or 0.5
clon = ilons.min() % 1. # 0.0 or 0.25, 0.0 or 0.5
# new lats
olat = -60. + clat + np.arange(nlat) / float(nlat - 1) * (150. - dlat)
olat = olat[::-1]
# new lons
olon = -180. + clon + np.arange(nlon) / float(nlon - 1) * (360. - dlon)
olon2d, olat2d = np.meshgrid(olon, olat) # new lats, lons in 2D
lltree = cp.llKDTree(olat2d, olon2d) # KD-tree
iidl.append(np.arange(nland, dtype=int)) # indices of land in input grid
fi_oidx = np.empty(nland, dtype=int) # indices of lon in output grid
fi_oidy = np.empty(nland, dtype=int) # indices of lat in output grid
for i in range(nland):
iy, ix = lltree.query(ilats[i], ilons[i])
fi_oidx[i] = ix
fi_oidy[i] = iy
oidx.append(fi_oidx)
oidy.append(fi_oidy)
fi.close()
#
# Copy variables from in to out expanding the land dimension to y, x
#
# copy static and dynamic variables
if verbose:
print('Copy input to output')
n = 0
for ncvar in ncvars:
if ncvar == 'time':
continue
if verbose:
tstartvar = ptime.time()
print(f' {ncvar}')
n += 1
ifile0 = ifiles[0]
fi0 = nc.Dataset(ifile0, 'r')
fo = nc.Dataset(ofile, 'a', format=oformat)
ivar0 = fi0.variables[ncvar]
ivar0_dtype = ivar0.dtype
ovar = fo.variables[ncvar]
if ncvar == 'longitude':
fi0.close()
ovar[:] = olon2d
elif ncvar == 'latitude':
fi0.close()
ovar[:] = olat2d
elif (('land' not in ivar0.dimensions) and
('ntile' not in ivar0.dimensions)):
# should not be masked and all the same: check
ivar00 = ivar0[:]
fi0.close()
for ifile in ifiles:
fi = nc.Dataset(ifile, 'r')
ivar = fi.variables[ncvar][:]
if not np.all(ivar00 == ivar):
print(f'ivar0: {ivar00}')
print(f'ivar: {ivar}')
fi.close()
fo.close()
raise ValueError(f'variable {ncvar} not equal in file'
f' {ifile0} and file {ifile}')
fi.close()
del ivar
ovar[:] = ivar00
del ivar00
elif ('time' not in ivar0.dimensions):
fi0.close()
outvar = np.full(ovar.shape,
pj.ncio.get_fill_value_for_dtype(ivar0_dtype))
for f, ifile in enumerate(ifiles):
fi = nc.Dataset(ifile, 'r')
ivar = fi.variables[ncvar]
# read whole field
invar = ivar[:]
# fill in memory
if len(ivar.shape) == 1:
outvar[oidy[f], oidx[f]] = invar[iidl[f]]
else:
outvar[..., oidy[f], oidx[f]] = invar[..., iidl[f]]
fi.close()
del invar, ivar
# write to disk in one go
ovar[:] = outvar
del outvar
else: # has time and land/ntile
fi0.close()
if verbose:
print(f' {ovar.shape}')
nt = np.ceil(np.prod(ovar.shape) * 8 / gb / 2).astype(int)
tindexes = np.linspace(0, ntime, nt+1, dtype=int)
for nn in range(nt):
oshape = list(ovar.shape)
i1 = tindexes[nn]
i2 = tindexes[nn + 1]
oshape[0] = i2 - i1
if verbose:
print(f' {oshape} {i1} {i2}')
outvar = np.full(oshape,
pj.ncio.get_fill_value_for_dtype(ivar0_dtype))
mem = psutil.Process().memory_info()
if verbose:
tstartread = ptime.time()
for f, ifile in enumerate(ifiles):
fi = nc.Dataset(ifile, 'r')
ivar = fi.variables[ncvar]
# read time steps
invar = ivar[i1:i2, ...]
# fill in memory
outvar[..., oidy[f], oidx[f]] = invar[..., iidl[f]]
fi.close()
del invar, ivar
# write to disk in one go
if verbose:
tstopread = ptime.time()
print(f' Read {tstopread - tstartread:.2f} s')
tstartwrite = tstopread
ovar[i1:i2, ...] = outvar
if verbose:
tstopwrite = ptime.time()
print(f' Wrote {tstopwrite - tstartwrite:.2f} s')
mem = psutil.Process().memory_info()
print(f' Memory physical [GB]: {mem.rss / gb:.2f},'
f' virtual: {mem.vms / gb:.2f}')
del outvar
fo.close()
del ivar0, ovar
gc.collect()
if verbose:
tstopvar = ptime.time()
print(f' Total {tstopvar - tstartvar:.2f} s')
# -------------------------------------------------------------------------
# Finish
if verbose:
tstop = ptime.time()
print(f'Finished in [s]: {tstop - tstart:.2f}')