-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathaligner_seed.cpp
2221 lines (2131 loc) · 65.6 KB
/
aligner_seed.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2011, Ben Langmead <[email protected]>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#include <array>
#include "aligner_cache.h"
#include "aligner_seed.h"
#include "search_globals.h"
#include "bt2_idx.h"
using namespace std;
/**
* Construct a constraint with no edits of any kind allowed.
*/
Constraint Constraint::exact() {
Constraint c;
c.edits = c.mms = c.ins = c.dels = c.penalty = 0;
return c;
}
/**
* Construct a constraint where the only constraint is a total
* penalty constraint.
*/
Constraint Constraint::penaltyBased(int pen) {
Constraint c;
c.penalty = pen;
return c;
}
/**
* Construct a constraint where the only constraint is a total
* penalty constraint related to the length of the read.
*/
Constraint Constraint::penaltyFuncBased(const SimpleFunc& f) {
Constraint c;
c.penFunc = f;
return c;
}
/**
* Construct a constraint where the only constraint is a total
* penalty constraint.
*/
Constraint Constraint::mmBased(int mms) {
Constraint c;
c.mms = mms;
c.edits = c.dels = c.ins = 0;
return c;
}
/**
* Construct a constraint where the only constraint is a total
* penalty constraint.
*/
Constraint Constraint::editBased(int edits) {
Constraint c;
c.edits = edits;
c.dels = c.ins = c.mms = 0;
return c;
}
// Input to seachSeedBi
class SeedAligner::SeedAlignerSearchParams {
public:
class CacheAndSeed {
public:
CacheAndSeed(
SeedSearchCache &_cache, // local seed alignment cache
const InstantiatedSeed& _seed, // current instantiated seed
const Ebwt* ebwtFw, // forward index (BWT)
const Ebwt* ebwtBw // backward/mirror index (BWT')
) : cache(_cache)
, seed(_seed)
, hasi0(false), fwi0(0), bwi0(0) // just set a default
{
int off = seed.steps[0];
bool ltr = off > 0;
off = abs(off)-1;
int ftabLen = ebwtFw->eh().ftabChars();
hasi0 = (ftabLen > 1 && ftabLen <= seed.maxjump);
if(hasi0) {
if(!ltr) {
assert_geq(off+1, ftabLen-1);
off = off - ftabLen + 1;
}
// startSearchSeedBi will need them, start prefetching now
fwi0 = ebwtFw->ftabSeqToInt( cache.getSeq(), off, false);
ebwtFw->ftabLoHiPrefetch(fwi0);
if(ebwtBw!=NULL) {
bwi0 = ebwtBw->ftabSeqToInt( cache.getSeq(), off, false);
ebwtBw->ftabLoHiPrefetch(bwi0);
}
}
}
CacheAndSeed(CacheAndSeed &other) = default;
CacheAndSeed(CacheAndSeed &&other) = default;
SeedSearchCache &cache; // local seed alignment cache
const InstantiatedSeed& seed; // current instantiated seed
bool hasi0;
TIndexOffU fwi0; // Idx of fw ftab
TIndexOffU bwi0; // Idx of bw ftab
};
SeedAlignerSearchParams(
CacheAndSeed &_cs,
const int _step, // depth into steps[] array
const int _depth, // recursion depth
const BwtTopBot &_bwt, // The 4 BWT idxs
const SideLocus &_tloc, // locus for top (perhaps unititialized)
const SideLocus &_bloc, // locus for bot (perhaps unititialized)
const std::array<Constraint,3> _cv, // constraints to enforce in seed zones
const Constraint &_overall, // overall constraints to enforce
DoublyLinkedList<Edit> *_prevEdit) // previous edit
: cs(_cs)
, step(_step)
, depth(_depth)
, bwt(_bwt)
, tloc(_tloc)
, bloc(_bloc)
, cv(_cv)
, overall(_overall)
, prevEdit(_prevEdit)
{}
SeedAlignerSearchParams(
CacheAndSeed &_cs,
const int _step, // depth into steps[] array
const int _depth, // recursion depth
const BwtTopBot &_bwt, // The 4 BWT idxs
const SideLocus &_tloc, // locus for top (perhaps unititialized)
const SideLocus &_bloc, // locus for bot (perhaps unititialized)
const Constraint &_c0, // constraints to enforce in seed zone 0
const Constraint &_c1, // constraints to enforce in seed zone 1
const Constraint &_c2, // constraints to enforce in seed zone 2
const Constraint &_overall, // overall constraints to enforce
DoublyLinkedList<Edit> *_prevEdit) // previous edit
: cs(_cs)
, step(_step)
, depth(_depth)
, bwt(_bwt)
, tloc(_tloc)
, bloc(_bloc)
, cv{ _c0, _c1, _c2 }
, overall(_overall)
, prevEdit(_prevEdit)
{}
// create an empty bwt, tloc and bloc, with step=0
// and constratins from seed, for initial searchSeedBi invocation
SeedAlignerSearchParams(
SeedSearchCache &cache, // local seed alignment cache
const InstantiatedSeed& seed, // current instantiated seed
const Ebwt* ebwtFw, // forward index (BWT)
const Ebwt* ebwtBw) // backward/mirror index (BWT')
: cs(cache, seed, ebwtFw, ebwtBw)
, step(0)
, depth(0)
, bwt()
, tloc()
, bloc()
, cv{ seed.cons[0], seed.cons[1], seed.cons[2] }
, overall(seed.overall)
, prevEdit(NULL)
{}
void checkCV() const {
assert(cv[0].acceptable());
assert(cv[1].acceptable());
assert(cv[2].acceptable());
}
CacheAndSeed cs; // local seed alignment cache and associated instatiated seed
int step; // depth into steps[] array
int depth; // recursion depth
BwtTopBot bwt; // The 4 BWT idxs
SideLocus tloc; // locus for top (perhaps unititialized)
SideLocus bloc; // locus for bot (perhaps unititialized)
std::array<Constraint,3> cv; // constraints to enforce in seed zones
Constraint overall; // overall constraints to enforce
DoublyLinkedList<Edit> *prevEdit; // previous edit
};
//
// Some static methods for constructing some standard SeedPolicies
//
/**
* Given a read, depth and orientation, extract a seed data structure
* from the read and fill in the steps & zones arrays. The Seed
* contains the sequence and quality values.
*/
bool
Seed::instantiate(
const Read& read,
const BTDnaString& seq, // seed read sequence
const BTString& qual, // seed quality sequence
const Scoring& pens,
int depth,
int seedoffidx,
int seedtypeidx,
bool fw,
InstantiatedSeed& is) const
{
assert(overall != NULL);
int seedlen = len;
if((int)read.length() < seedlen) {
// Shrink seed length to fit read if necessary
seedlen = (int)read.length();
}
assert_gt(seedlen, 0);
is.steps.resize(seedlen);
is.zones.resize(seedlen);
// Fill in 'steps' and 'zones'
//
// The 'steps' list indicates which read character should be
// incorporated at each step of the search process. Often we will
// simply proceed from one end to the other, in which case the
// 'steps' list is ascending or descending. In some cases (e.g.
// the 2mm case), we might want to switch directions at least once
// during the search, in which case 'steps' will jump in the
// middle. When an element of the 'steps' list is negative, this
// indicates that the next
//
// The 'zones' list indicates which zone constraint is active at
// each step. Each element of the 'zones' list is a pair; the
// first pair element indicates the applicable zone when
// considering either mismatch or delete (ref gap) events, while
// the second pair element indicates the applicable zone when
// considering insertion (read gap) events. When either pair
// element is a negative number, that indicates that we are about
// to leave the zone for good, at which point we may need to
// evaluate whether we have reached the zone's budget.
//
switch(type) {
case SEED_TYPE_EXACT: {
for(int k = 0; k < seedlen; k++) {
is.steps[k] = -(seedlen - k);
// Zone 0 all the way
is.zones[k].first = is.zones[k].second = 0;
}
break;
}
case SEED_TYPE_LEFT_TO_RIGHT: {
for(int k = 0; k < seedlen; k++) {
is.steps[k] = k+1;
// Zone 0 from 0 up to ceil(len/2), then 1
is.zones[k].first = is.zones[k].second = ((k < (seedlen+1)/2) ? 0 : 1);
}
// Zone 1 ends at the RHS
is.zones[seedlen-1].first = is.zones[seedlen-1].second = -1;
break;
}
case SEED_TYPE_RIGHT_TO_LEFT: {
for(int k = 0; k < seedlen; k++) {
is.steps[k] = -(seedlen - k);
// Zone 0 from 0 up to floor(len/2), then 1
is.zones[k].first = ((k < seedlen/2) ? 0 : 1);
// Inserts: Zone 0 from 0 up to ceil(len/2)-1, then 1
is.zones[k].second = ((k < (seedlen+1)/2+1) ? 0 : 1);
}
is.zones[seedlen-1].first = is.zones[seedlen-1].second = -1;
break;
}
case SEED_TYPE_INSIDE_OUT: {
// Zone 0 from ceil(N/4) up to N-floor(N/4)
int step = 0;
for(int k = (seedlen+3)/4; k < seedlen - (seedlen/4); k++) {
is.zones[step].first = is.zones[step].second = 0;
is.steps[step++] = k+1;
}
// Zone 1 from N-floor(N/4) up
for(int k = seedlen - (seedlen/4); k < seedlen; k++) {
is.zones[step].first = is.zones[step].second = 1;
is.steps[step++] = k+1;
}
// No Zone 1 if seedlen is short (like 2)
//assert_eq(1, is.zones[step-1].first);
is.zones[step-1].first = is.zones[step-1].second = -1;
// Zone 2 from ((seedlen+3)/4)-1 down to 0
for(int k = ((seedlen+3)/4)-1; k >= 0; k--) {
is.zones[step].first = is.zones[step].second = 2;
is.steps[step++] = -(k+1);
}
assert_eq(2, is.zones[step-1].first);
is.zones[step-1].first = is.zones[step-1].second = -2;
assert_eq(seedlen, step);
break;
}
default:
throw 1;
}
// Instantiate constraints
for(int i = 0; i < 3; i++) {
is.cons[i] = zones[i];
is.cons[i].instantiate(read.length());
}
is.overall = *overall;
is.overall.instantiate(read.length());
// Take a sweep through the seed sequence. Consider where the Ns
// occur and how zones are laid out. Calculate the maximum number
// of positions we can jump over initially (e.g. with the ftab) and
// perhaps set this function's return value to false, indicating
// that the arrangements of Ns prevents the seed from aligning.
bool streak = true;
is.maxjump = 0;
bool ret = true;
bool ltr = (is.steps[0] > 0); // true -> left-to-right
for(size_t i = 0; i < is.steps.size(); i++) {
assert_neq(0, is.steps[i]);
int off = is.steps[i];
off = abs(off)-1;
Constraint& cons = is.cons[abs(is.zones[i].first)];
int c = seq[off]; assert_range(0, 4, c);
int q = qual[off];
if(ltr != (is.steps[i] > 0) || // changed direction
is.zones[i].first != 0 || // changed zone
is.zones[i].second != 0) // changed zone
{
streak = false;
}
if(c == 4) {
// Induced mismatch
if(cons.canN(q, pens)) {
cons.chargeN(q, pens);
} else {
// Seed disqualified due to arrangement of Ns
return false;
}
}
if(streak) is.maxjump++;
}
is.seedoff = depth;
is.seedoffidx = seedoffidx;
is.fw = fw;
is.s = *this;
return ret;
}
/**
* Return a set consisting of 1 seed encapsulating an exact matching
* strategy.
*/
void
Seed::zeroMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
oall.init();
// Seed policy 1: left-to-right search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_EXACT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::exact();
pols.back().zones[2] = Constraint::exact();
pols.back().overall = &oall;
}
/**
* Return a set of 2 seeds encapsulating a half-and-half 1mm strategy.
*/
void
Seed::oneMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
oall.init();
// Seed policy 1: left-to-right search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_LEFT_TO_RIGHT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(1);
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
// Seed policy 2: right-to-left search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_RIGHT_TO_LEFT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(1);
pols.back().zones[1].mmsCeil = 0;
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
}
/**
* Return a set of 3 seeds encapsulating search roots for:
*
* 1. Starting from the left-hand side and searching toward the
* right-hand side allowing 2 mismatches in the right half.
* 2. Starting from the right-hand side and searching toward the
* left-hand side allowing 2 mismatches in the left half.
* 3. Starting (effectively) from the center and searching out toward
* both the left and right-hand sides, allowing one mismatch on
* either side.
*
* This is not exhaustive. There are 2 mismatch cases mised; if you
* imagine the seed as divided into four successive quarters A, B, C
* and D, the cases we miss are when mismatches occur in A and C or B
* and D.
*/
void
Seed::twoMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
oall.init();
// Seed policy 1: left-to-right search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_LEFT_TO_RIGHT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(2);
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
// Seed policy 2: right-to-left search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_RIGHT_TO_LEFT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(2);
pols.back().zones[1].mmsCeil = 1; // Must have used at least 1 mismatch
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
// Seed policy 3: inside-out search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_INSIDE_OUT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(1);
pols.back().zones[1].mmsCeil = 0; // Must have used at least 1 mismatch
pols.back().zones[2] = Constraint::mmBased(1);
pols.back().zones[2].mmsCeil = 0; // Must have used at least 1 mismatch
pols.back().overall = &oall;
}
/**
* Types of actions that can be taken by the SeedAligner.
*/
enum {
SA_ACTION_TYPE_RESET = 1,
SA_ACTION_TYPE_SEARCH_SEED, // 2
SA_ACTION_TYPE_FTAB, // 3
SA_ACTION_TYPE_FCHR, // 4
SA_ACTION_TYPE_MATCH, // 5
SA_ACTION_TYPE_EDIT // 6
};
/**
* Given a read and a few coordinates that describe a substring of the read (or
* its reverse complement), fill in 'seq' and 'qual' objects with the seed
* sequence and qualities.
*
* The seq field is filled with the sequence as it would align to the Watson
* reference strand. I.e. if fw is false, then the sequence that appears in
* 'seq' is the reverse complement of the raw read substring.
*/
void
SeedAligner::instantiateSeq(
const Read& read, // input read
BTDnaString& seq, // output sequence
BTString& qual, // output qualities
int len, // seed length
int depth, // seed's 0-based offset from 5' end
bool fw) const // seed's orientation
{
// Fill in 'seq' and 'qual'
int seedlen = len;
if((int)read.length() < seedlen) seedlen = (int)read.length();
seq.resize(len);
qual.resize(len);
// If fw is false, we take characters starting at the 3' end of the
// reverse complement of the read.
for(int i = 0; i < len; i++) {
seq.set(read.patFw.windowGetDna(i, fw, depth, len), i);
qual.set(read.qual.windowGet(i, fw, depth, len), i);
}
}
/**
* We assume that all seeds are the same length.
*
* For each seed, instantiate the seed, retracting if necessary.
*/
pair<int, int> SeedAligner::instantiateSeeds(
const EList<Seed>& seeds, // search seeds
size_t off, // offset into read to start extracting
int per, // interval between seeds
const Read& read, // read to align
const Scoring& pens, // scoring scheme
bool nofw, // don't align forward read
bool norc, // don't align revcomp read
AlignmentCacheIface& cache,// holds some seed hits from previous reads
SeedResults& sr, // holds all the seed hits
SeedSearchMetrics& met, // metrics
pair<int, int>& instFw,
pair<int, int>& instRc)
{
assert(!seeds.empty());
assert_gt(read.length(), 0);
// Check whether read has too many Ns
offIdx2off_.clear();
int len = seeds[0].len; // assume they're all the same length
#ifndef NDEBUG
for(size_t i = 1; i < seeds.size(); i++) {
assert_eq(len, seeds[i].len);
}
#endif
// Calc # seeds within read interval
int nseeds = 1;
if((int)read.length() - (int)off > len) {
nseeds += ((int)read.length() - (int)off - len) / per;
}
for(int i = 0; i < nseeds; i++) {
offIdx2off_.push_back(per * i + (int)off);
}
pair<int, int> ret;
ret.first = 0; // # seeds that require alignment
ret.second = 0; // # seeds that hit in cache with non-empty results
sr.reset(read, offIdx2off_, nseeds);
assert(sr.repOk(&cache.current(), true)); // require that SeedResult be initialized
// For each seed position
for(int fwi = 0; fwi < 2; fwi++) {
bool fw = (fwi == 0);
if((fw && nofw) || (!fw && norc)) {
// Skip this orientation b/c user specified --nofw or --norc
continue;
}
// For each seed position
for(int i = 0; i < nseeds; i++) {
int depth = i * per + (int)off;
int seedlen = seeds[0].len;
// Extract the seed sequence at this offset
// If fw == true, we extract the characters from i*per to
// i*(per-1) (exclusive). If fw == false,
instantiateSeq(
read,
sr.seqs(fw)[i],
sr.quals(fw)[i],
std::min<int>((int)seedlen, (int)read.length()),
depth,
fw);
QKey qk(sr.seqs(fw)[i] ASSERT_ONLY(, tmpdnastr_));
// For each search strategy
EList<InstantiatedSeed>& iss = sr.instantiatedSeeds(fw, i);
for(int j = 0; j < (int)seeds.size(); j++) {
iss.expand();
assert_eq(seedlen, seeds[j].len);
InstantiatedSeed* is = &iss.back();
if(seeds[j].instantiate(
read,
sr.seqs(fw)[i],
sr.quals(fw)[i],
pens,
depth,
i,
j,
fw,
*is))
{
// Can we fill this seed hit in from the cache?
ret.first++;
if(fwi == 0) { instFw.first++; } else { instRc.first++; }
} else {
// Seed may fail to instantiate if there are Ns
// that prevent it from matching
met.filteredseed++;
iss.pop_back();
}
}
}
}
return ret;
}
/**
* We assume that all seeds are the same length.
*
* For each seed:
*
* 1. Instantiate all seeds, retracting them if necessary.
* 2. Calculate zone boundaries for each seed
*/
void SeedAligner::searchAllSeeds(
const EList<Seed>& seeds, // search seeds
const Ebwt* ebwtFw, // BWT index
const Ebwt* ebwtBw, // BWT' index
const Read& read, // read to align
const Scoring& pens, // scoring scheme
AlignmentCacheIface& cache, // local cache for seed alignments
SeedResults& sr, // holds all the seed hits
SeedSearchMetrics& met, // metrics
PerReadMetrics& prm) // per-read metrics
{
assert(!seeds.empty());
assert(ebwtFw != NULL);
assert(ebwtFw->isInMemory());
assert(sr.repOk(&cache.current()));
ebwtFw_ = ebwtFw;
ebwtBw_ = ebwtBw;
sc_ = &pens;
read_ = &read;
bwops_ = bwedits_ = 0;
uint64_t possearches = 0, seedsearches = 0, intrahits = 0, interhits = 0, ooms = 0;
/**
* TODO: Define is somewhere else
* Note: The ideal may be dependent on the CPU model, but 8 seems to work fine.
* 2 is too small for prefetch to be fully effective, 4 seems already OK,
* and 32 is too big (cache trashing).
**/
const int ibatch_size = 8;
SeedSearchMultiCache mcache;
std::vector<SeedAlignerSearchParams> paramVec;
mcache.reserve(ibatch_size);
paramVec.reserve(ibatch_size*16); // assume no more than 16 iss per cache, on average
for(int fwi = 0; fwi < 2; fwi++) {
const bool fw = (fwi == 0);
int i =0;
// For each instantiated seed, but batched
while (i < (int)sr.numOffs()) {
const int ibatch_max = std::min(i+ibatch_size,(int)sr.numOffs());
mcache.clear();
paramVec.clear();
// start aligning and find list of seeds to search
for(; i < ibatch_max; i++) {
assert(sr.repOk(&cache.current()));
EList<InstantiatedSeed>& iss = sr.instantiatedSeeds(fw, i);
if(iss.empty()) {
// Cache hit in an across-read cache
continue;
}
const BTDnaString& seq = sr.seqs(fw)[i]; // seed sequence
const BTString& qual = sr.quals(fw)[i]; // seed qualities
mcache.emplace_back(seq, qual, i, fw);
const size_t mnr = mcache.size()-1;
SeedSearchCache &srcache = mcache[mnr];
{
possearches++;
for(size_t j = 0; j < iss.size(); j++) {
// Set seq and qual appropriately, using the seed sequences
// and qualities already installed in SeedResults
assert_eq(fw, iss[j].fw);
assert_eq(i, (int)iss[j].seedoffidx);
paramVec.emplace_back(srcache, iss[j], ebwtFw_, ebwtBw_);
seedsearches++;
}
}
} // internal i (batch) loop
// do the searches
if (!paramVec.empty()) searchSeedBi(paramVec.size(), &(paramVec[0]));
// finish aligning and add to SeedResult
for (size_t mnr=0; mnr<mcache.size(); mnr++) {
SeedSearchCache &srcache = mcache[mnr];
// Tell the cache that we've started aligning, so the cache can
// expect a series of on-the-fly updates
int ret = srcache.beginAlign(cache);
if(ret == -1) {
// Out of memory when we tried to add key to map
ooms++;
continue;
}
assert(srcache.aligning());
if(!srcache.addAllCached()){
// Memory exhausted during copy
ooms++;
continue;
}
srcache.finishAlign();
assert(!srcache.aligning());
if(srcache.qvValid()) {
sr.add(
srcache.getQv(), // range of ranges in cache
cache.current(), // cache
mcache.getSeedOffIdx(mnr), // seed index (from 5' end)
mcache.getFw(mnr)); // whether seed is from forward read
}
} // mnr loop
} // external i while
} // for fwi
prm.nSeedRanges = sr.numRanges();
prm.nSeedElts = sr.numElts();
prm.nSeedRangesFw = sr.numRangesFw();
prm.nSeedRangesRc = sr.numRangesRc();
prm.nSeedEltsFw = sr.numEltsFw();
prm.nSeedEltsRc = sr.numEltsRc();
prm.seedMedian = (uint64_t)(sr.medianHitsPerSeed() + 0.5);
prm.seedMean = (uint64_t)sr.averageHitsPerSeed();
prm.nSdFmops += bwops_;
met.seedsearch += seedsearches;
met.nrange += sr.numRanges();
met.nelt += sr.numElts();
met.possearch += possearches;
met.intrahit += intrahits;
met.interhit += interhits;
met.ooms += ooms;
met.bwops += bwops_;
met.bweds += bwedits_;
}
bool SeedAligner::sanityPartial(
const Ebwt* ebwtFw, // BWT index
const Ebwt* ebwtBw, // BWT' index
const BTDnaString& seq,
size_t dep,
size_t len,
bool do1mm,
TIndexOffU topfw,
TIndexOffU botfw,
TIndexOffU topbw,
TIndexOffU botbw)
{
tmpdnastr_.clear();
for(size_t i = dep; i < len; i++) {
tmpdnastr_.append(seq[i]);
}
TIndexOffU top_fw = 0, bot_fw = 0;
ebwtFw->contains(tmpdnastr_, &top_fw, &bot_fw);
assert_eq(top_fw, topfw);
assert_eq(bot_fw, botfw);
if(do1mm && ebwtBw != NULL) {
tmpdnastr_.reverse();
TIndexOffU top_bw = 0, bot_bw = 0;
ebwtBw->contains(tmpdnastr_, &top_bw, &bot_bw);
assert_eq(top_bw, topbw);
assert_eq(bot_bw, botbw);
}
return true;
}
inline void exactSweepInit(
const Ebwt& ebwt,
const BTDnaString& seq,
const int ftabLen,
const size_t len,
size_t &dep,
TIndexOffU &top,
TIndexOffU &bot
)
{
top = bot = 0;
const size_t left = len - dep;
assert_gt(left, 0);
bool doFtab = ftabLen > 1 && left >= (size_t)ftabLen;
if(doFtab) {
const size_t endi = len-dep-1;
// Does N interfere with use of Ftab?
for(size_t i = 0; i < (size_t)ftabLen; i++) {
int c = seq[endi-i];
if(c > 3) {
doFtab = false;
break;
}
}
}
if(doFtab) {
// Use ftab
ebwt.ftabLoHi(seq, left - ftabLen, false, top, bot);
dep += (size_t)ftabLen;
} else {
// Use fchr
int c = seq[len-dep-1];
if(c < 4) {
top = ebwt.fchr()[c];
bot = ebwt.fchr()[c+1];
}
dep++;
}
}
inline void exactSweepMapLF(
const Ebwt& ebwt,
const BTDnaString& seq,
const size_t len,
const size_t dep,
const SideLocus &tloc,
const SideLocus &bloc,
TIndexOffU &top,
TIndexOffU &bot,
uint64_t &bwops // Burrows-Wheeler operations
)
{
int c = seq[len-dep-1];
if(c > 3) {
top = bot = 0;
} else {
if(bloc.valid()) {
bwops += 2;
top = ebwt.mapLF(tloc, c);
bot = ebwt.mapLF(bloc, c);
} else {
bwops++;
top = ebwt.mapLF1(top, tloc, c);
if(top == OFF_MASK) {
top = bot = 0;
} else {
bot = top+1;
}
}
}
}
inline bool exactSweepStep(
const Ebwt& ebwt, // BWT index
const TIndexOffU top,
const TIndexOffU bot,
const size_t mineMax, // don't care about edit bounds > this
SideLocus &tloc,
SideLocus &bloc,
size_t &mineCnt, // minimum # edits
size_t &nedit,
bool &done
)
{
if(bot <= top) {
nedit++;
if(nedit >= mineMax) {
mineCnt = nedit;
done = true;
}
return true;
}
INIT_LOCS(top, bot, tloc, bloc, ebwt);
return false;
}
/**
* Sweep right-to-left and left-to-right using exact matching. Remember all
* the SA ranges encountered along the way. Report exact matches if there are
* any. Calculate a lower bound on the number of edits in an end-to-end
* alignment.
*/
size_t SeedAligner::exactSweep(
const Ebwt& ebwt, // BWT index
const Read& read, // read to align
const Scoring& sc, // scoring scheme
bool nofw, // don't align forward read
bool norc, // don't align revcomp read
size_t mineMax, // don't care about edit bounds > this
size_t& mineFw, // minimum # edits for forward read
size_t& mineRc, // minimum # edits for revcomp read
bool repex, // report 0mm hits?
SeedResults& hits, // holds all the seed hits (and exact hit)
SeedSearchMetrics& met) // metrics
{
assert_gt(mineMax, 0);
const size_t len = read.length();
const int ftabLen = ebwt.eh().ftabChars();
size_t nelt = 0;
std::array<SideLocus,2> tloc;
std::array<SideLocus,2> bloc;
TIndexOffU top[2] = {0, 0};
TIndexOffU bot[2] = {0, 0};
size_t dep[2] = {0, 0};
size_t nedit[2] = {0, 0};
bool doInit[2] = {true, true};
size_t prefetch_count = 0;
bool done[2] = {nofw, norc};
for(int fwi = 0; fwi < 2; fwi++) {
if (!done[fwi]) {
bool fw = (fwi == 0);
const BTDnaString& seq = fw ? read.patFw : read.patRc;
assert(!seq.empty());
__builtin_prefetch(&(seq[len-1]));
if (len>48) __builtin_prefetch(&(seq[len-49])); // HW prefetch prediction assumes forward, help it
}
}
while( (dep[0] < len && !done[0]) || (dep[1] < len && !done[1]) ) {
prefetch_count++;
if (prefetch_count>=48) { // cache line is 64 bytes, but we may skip some deps
for(int fwi = 0; fwi < 2; fwi++) {
if (dep[fwi] < len && !done[fwi]) {
bool fw = (fwi == 0);
const BTDnaString& seq = fw ? read.patFw : read.patRc;
const size_t left = len-dep[fwi];
if (left>48) {
__builtin_prefetch(&(seq[left-49])); // HW prefetch prediction assumes forward, help it
}
}
}
prefetch_count=0;
}
// by doing both fw in the internal loop, I give the prefetch in exactSweepStep to be effective
for(int fwi = 0; fwi < 2; fwi++) {
if (dep[fwi] < len && !done[fwi]) {
bool fw = (fwi == 0);
const BTDnaString& seq = fw ? read.patFw : read.patRc;
if (doInit[fwi]) {
exactSweepInit(ebwt, seq, ftabLen, len, // in
dep[fwi], top[fwi], bot[fwi]); // out
if ( exactSweepStep(ebwt, top[fwi], bot[fwi], mineMax,
tloc[fwi], bloc[fwi],
fw ? mineFw : mineRc,
nedit[fwi], done[fwi]) ) {
continue;
}
doInit[fwi]=false;
}
if (dep[fwi]< len) {
exactSweepMapLF(ebwt, seq, len, dep[fwi], tloc[fwi], bloc[fwi],
top[fwi], bot[fwi], bwops_);
if ( exactSweepStep(ebwt, top[fwi], bot[fwi], mineMax,
tloc[fwi], bloc[fwi],
fw ? mineFw : mineRc,
nedit[fwi], done[fwi]) ) {
doInit[fwi]=true;
}
dep[fwi]++;
}
}
}
}
for(int fwi = 0; fwi < 2; fwi++) {
if( (!done[fwi]) && (dep[fwi] >= len) ) {
const bool fw = (fwi == 0);
// Set the minimum # edits
if(fw) { mineFw = nedit[fwi]; } else { mineRc = nedit[fwi]; }
// Done
if(nedit[fwi] == 0 && bot[fwi] > top[fwi]) {
if(repex) {
// This is an exact hit
int64_t score = len * sc.match();
if(fw) {
hits.addExactEeFw(top[fwi], bot[fwi], NULL, NULL, fw, score);
assert(ebwt.contains(fw ? read.patFw : read.patRc, NULL, NULL));
} else {
hits.addExactEeRc(top[fwi], bot[fwi], NULL, NULL, fw, score);
assert(ebwt.contains(fw ? read.patFw : read.patRc, NULL, NULL));
}
}
nelt += (bot[fwi] - top[fwi]);
}
}
}
return nelt;
}
/**
* Search for end-to-end exact hit for read. Return true iff one is found.
*/
bool SeedAligner::oneMmSearch(
const Ebwt* ebwtFw, // BWT index
const Ebwt* ebwtBw, // BWT' index
const Read& read, // read to align
const Scoring& sc, // scoring
int64_t minsc, // minimum score
bool nofw, // don't align forward read
bool norc, // don't align revcomp read
bool local, // 1mm hits must be legal local alignments
bool repex, // report 0mm hits?
bool rep1mm, // report 1mm hits?
SeedResults& hits, // holds all the seed hits (and exact hit)
SeedSearchMetrics& met) // metrics
{
assert(!rep1mm || ebwtBw != NULL);
const size_t len = read.length();
int nceil = sc.nCeil.f<int>((double)len);
size_t ns = read.ns();
if(ns > 1) {
// Can't align this with <= 1 mismatches
return false;
} else if(ns == 1 && !rep1mm) {
// Can't align this with 0 mismatches
return false;
}
assert_geq(len, 2);
assert(!rep1mm || ebwtBw->eh().ftabChars() == ebwtFw->eh().ftabChars());
#ifndef NDEBUG